
Pattern Search Ranking and Selection
Algorithms for Mixed-Variable

Optimization of Stochastic Systems

DISSERTATION

Todd A. Sriver B.S., M.S.

Major, USAF

AFIT/DS/ENS/04-02

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public release; distribution unlimited

The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, the Department of Defense, or the

United States Government.

AFIT/DS/ENS/04-02

Pattern Search Ranking and Selection Algorithms for

Mixed-Variable Optimization of Stochastic Systems

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

In Partial Fulfillment for the Degree of

Doctor of Philosophy

Specialization in: Operations Research

Todd A. Sriver B.S., M.S.

Major, USAF

September, 2004

Sponsored by the Air Force Office of Scientific Research

Approved for public release; distribution unlimited

AFIT/DS/ENS/04-02

Abstract

A new class of algorithms is introduced and analyzed for bound and linearly con-

strained optimization problems with stochastic objective functions and a mixture of design

variable types. The generalized pattern search (GPS) class of algorithms is extended to a

new problem setting in which objective function evaluations require sampling from a model

of a stochastic system. The approach combines GPS with ranking and selection (R&S)

statistical procedures to select new iterates. The derivative-free algorithms require only

black-box simulation responses and are applicable over domains with mixed variables (con-

tinuous, discrete numeric, and discrete categorical) to include bound and linear constraints

on the continuous variables. A convergence analysis for the general class of algorithms

establishes almost sure convergence of an iteration subsequence to stationary points appro-

priately defined in the mixed-variable domain. Additionally, specific algorithm instances

are implemented that provide computational enhancements to the basic algorithm. Im-

plementation alternatives include the use of modern R&S procedures designed to provide

efficient sampling strategies and the use of surrogate functions that augment the search by

approximating the unknown objective function with nonparametric response surfaces. In

a computational evaluation, six variants of the algorithm are tested along with four com-

peting methods on 26 standardized test problems. The numerical results validate the use

of advanced implementations as a means to improve algorithm performance.

iv

Acknowledgments

I express my heartfelt gratitude to many individuals who directly or indirectly sup-

ported me in the challenging, but rewarding, endeavor of completing a Ph.D. program. I

begin with the most important person — my wife — whose strength and encouragement were

essential to my success. I am also grateful for our three children (who make me very proud)

for the ability to make me smile during those times when the road ahead seemed difficult.

I owe a deep thanks my research advisor, Professor Jim Chrissis. His expertise, guid-

ance, and friendship kept me on the right track while enabling me to enjoy the ride. I am

also grateful to the remainder of my research committee, Lt Col Mark Abramson, Professor

Dick Deckro, and Professor J. O. Miller for all of the positive support they provided me.

In particular, Lt Col Abramson’s help on some of the more theoretical issues was crucial to

the development of the material presented in Chapter 3. I also thank the Air Force Office

of Scientific Research for sponsoring my work.

I would be negligent if I did not acknowledge my friends and colleagues in the B.A.R.F.

cubicle farm. The synergy amongst the Ph.D. students in that small building led to some

novel ideas incorporated in my research (Major Trevor Laine gets credit for introducing me

to kernel regression); but, perhaps more importantly, the moments of levity kept things in

the proper perspective.

Finally, I offer a special thanks to both my mother and father. Their love and guidance

throughout my life has inspired me to seek achievement.

Todd A. Sriver

v

Table of Contents

Page

Abstract . iv

Acknowledgments . v

List of Figures . x

List of Tables . xii

Chapter 1. INTRODUCTION . 1

1.1 Problem Setting . 1

1.2 Purpose of the Research . 5

1.2.1 Problem Statement . 6

1.2.2 Research Objectives . 6

1.3 Overview . 7

Chapter 2. LITERATURE REVIEW . 8

2.1 Methods for Stochastic Optimization . 8

2.1.1 Stochastic Approximation . 9

2.1.2 Random Search . 14

2.1.3 Ranking and Selection . 19

2.1.4 Direct Search . 22

2.1.5 Response Surface Methods . 28

2.1.6 Other Methods . 34

2.1.7 Summary of Methods . 35

vi

Page

2.2 Generalized Pattern Search . 36

2.2.1 Pattern Search for Continuous Variables . 36

2.2.2 Pattern Search for Mixed Variables . 39

2.2.3 Pattern Search for Random Response Functions 39

2.3 Summary . 40

Chapter 3. ALGORITHMIC FRAMEWORK AND CONVERGENCE

THEORY . 41

3.1 Mixed Variables . 41

3.2 Positive Spanning Sets and Mesh Construction . 43

3.3 Bound and Linear Constraint Handling . 46

3.4 The MGPS Algorithm for Deterministic Optimization 48

3.5 Iterate Selection for Noisy Response Functions . 51

3.6 The MGPS-RS Algorithm for Stochastic Optimization 53

3.7 Convergence Analysis . 57

3.7.1 Controlling Incorrect Selections . 59

3.7.2 Mesh Size Behavior . 61

3.7.3 Main Results . 65

3.8 Illustrative Example . 69

Chapter 4. ALGORITHM IMPLEMENTATIONS . 77

4.1 Specific Ranking and Selection (R&S) Procedures 77

4.2 Use of Surrogate Models . 83

vii

Page

4.3 Termination Criteria . 90

4.4 Algorithm Design . 94

4.4.1 Building the Surrogate During Initialization . 95

4.4.2 Algorithm Search Steps and Termination . 99

4.4.3 Algorithm Parameters . 102

4.5 Summary . 104

Chapter 5. COMPUTATIONAL EVALUATION . 105

5.1 Test Scenario . 105

5.2 Competing Algorithms . 106

5.3 Test Problems . 112

5.3.1 Continuous-Variable Problems . 113

5.3.2 Mixed-Variable Problems . 115

5.4 Experimental Design . 117

5.4.1 Performance Measures and Statistical Model 118

5.4.2 Selection of Parameter Settings . 119

5.5 Results and Analysis . 122

5.5.1 Analysis of MGPS-RS Variant Implementations 123

5.5.2 Comparative Analysis of All Algorithm Implementations 133

5.5.3 Termination Criteria Analysis . 137

5.5.4 Summary of the Analysis . 140

viii

Page

Chapter 6. CONCLUSIONS AND RECOMMENDATIONS 142

6.1 Contributions . 142

6.2 Future Research . 144

6.2.1 Modifications to Existing Search Framework 144

6.2.2 Extensions to Broader Problem Classes . 147

Appendix A. TEST PROBLEM DETAILS . 150

Appendix B. TEST RESULT DATA . 166

B.1 Iteration History Charts . 166

B.2 Statistical Analysis Data Summary . 191

Bibliography . 222

Vita . 234

Index . 235

ix

List of Figures

Figure Page

1.1 Model for Stochastic Optimization via Simulation . 2

2.1 Robbins-Monro Algorithm for Stochastic Optimization

(adapted from [10]) . 10

2.2 General Random Search Algorithm (adapted from [11]) 15

2.3 Nelder-Mead Search (adapted from [141]) . 24

3.1 Directions that conform to the boundary of Θc (from [81]) 47

3.2 MGPS Algorithm for Deterministic Optimization (adapted

from [1]) . 50

3.3 A Generic R&S Procedure . 53

3.4 MGPS-RS Algorithm for Stochastic Optimization . 54

3.5 Example Test Function. 71

3.6 Asymptotic behavior of MGPS-RS, shown after 2 million

response samples. 76

4.1 Rinott Selection Procedure (adapted from [27]) . 79

4.2 Combined Screening and Selection (SAS) Procedure (adapted

from [99]) . 80

4.3 Sequential Selection with Memory (adapted from [109]) 82

4.4 Smoothing effect of various bandwidth settings for fitting a

surface to eight design sites in one dimension. 84

x

Figure Page

4.5 Examples of Latin Hypercube Samples of Strengths 1 and 2

for p = 5. 86

4.6 Demonstration of the surrogate building process during

MGPS-RS algorithm execution. 89

4.7 Growth of response samples required per Rinott R&S

procedure for a fixed response variance of S2 = 1. 91

4.8 Growth in response samples for Rinott’s R&S procedure as α

decreases for fixed ratio S
δ
= 1. 94

4.9 Algorithm flow chart for MGPS-RS using surrogates. 96

4.10 MGPS-RS Algorithm using Surrogates for Stochastic Optimization 97

4.11 Algorithm for Generating Conforming Directions (adapted

from [1] and [81]). 101

5.1 Illustration of Corrective Move Method for Infeasible Iterates

Used in SA Algorithms. 110

5.2 Random Search Algorithm Used in Computational Evaluation 112

5.3 Mixed-variable Test Problem Illustration for nc = 2. 117

xi

List of Tables

Table Page

3.1 MGPS-RS Average Performance for Noise Case 1 over 20

Replications. 73

3.2 MGPS-RS Average Performance for Noise Case 2 over 20

Replications. 73

4.1 Summary of MGPS-RS parameters. 103

5.1 Continuous-Variable Test Problem Properties. 115

5.2 Mixed-variable Test Problems. 117

5.3 Parameter Settings for All Algorithms — Continuous-variable

Problems. 120

5.4 Summary of “Tunable” Parameter Settings for all Algorithms

— Continuous-variable Problems. 121

5.5 Parameter Settings for MGPS-RS and RNDS Algorithms —

Mixed-variable Problems. 122

5.6 Significance Tests of Main Effects for Performance Measures Q

and P — Continuous-variable Test Problems . 126

5.7 Significance Tests of Main Effects for Performance Measures Q

and P — Mixed-variable Test Problems. 127

5.8 Terminal Value for Performance Measure Q Averaged over 60

Replications (30 for each noise case) — MGPS-RS Algorithms. 130

5.9 Terminal Value for Performance Measure P Averaged over 60

Replications (30 for each noise case) — MGPS-RS Algorithms. 131

5.10 Number of Switches SW at Termination Averaged over 60

Replications (30 for each noise case) — MGPS-RS Algorithms. 132

xii

Table Page

5.11 Terminal Value for Performance Measure Q Averaged over 60

Replications (30 for each noise case) — FDSA, SPSA, RNDS,

NM, and Best MGPS-RS Algorithms. 134

5.12 Terminal Value for Performance Measure P Averaged over 60

Replications (30 for each noise case) — FDSA, SPSA, RNDS,

NM, and Best MGPS-RS Algorithms. 136

5.13 Termination Criteria Analysis for S-MGPS-RIN — Noise Case 1. 139

5.14 Termination Criteria Analysis for S-MGPS-RIN — Noise Case 2. 140

B.1 Transformation functions and Shapiro-Wilk Nonnormality

Test Results. 193

B.2 P-values for Nonparametric Tests — Performance Measure Q. 194

B.3 P-values for Nonparametric Tests — Performance Measure P 195

xiii

Pattern Search Ranking and Selection Algorithms for

Mixed-Variable Optimization of Stochastic Systems

Chapter 1 - Introduction

1.1 Problem Setting

Consider the optimization of a stochastic system in which the objective is to find a set

of controllable system parameters that minimize some performance measure of the system.

This situation is representative of many real-world optimization problems in which random

noise is present in the evaluation of the objective function. In many cases, the system is of

sufficient complexity so that the objective function, representing the performance measure

of interest, cannot be formulated analytically and must be evaluated via a representative

model of the system. In particular, the use of simulation is emphasized as a means of

characterizing and analyzing system performance. The term simulation is used in a generic

sense to indicate a numerical procedure that takes as input a set of controllable system

parameters (design variables) and generates as output a response for the measure of interest.

It is assumed that the variance of this measure can be reduced at the expense of additional

computational effort, e.g., repeated sampling from the simulation.

Applications involve the optimization of system designs where the systems under analy-

sis are represented as simulation models, such as those used to model manufacturing sys-

tems, production-inventory situations, communication or other infrastructure networks, lo-

gistics support systems, or airline operations. In these situations, a search methodology is

used to drive the search for the combination of values of the design variables that optimize

a system measure of performance. A model of such a stochastic optimization methodology

via simulation is depicted in Figure 1.1.

Optimization
Routine

Prescribes improved
vector via search

technique

Stochastic
Simulation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nX

X

M
1

X

Vector of design
variable values

“Black-box” system
response samples

Initial guess,
Parameter

settings

s
iiF 1)}({ =X

Figure 1.1. Model for Stochastic Optimization via Simulation

The random performance measure may be modeled as an unknown response function

F (x,ω) which depends upon an n-dimensional vector of controllable design variables x ∈

Rn, and the vector ω, which represents random effects inherent to the system. The objective

function f of the optimization problem is the expected performance of the system, given

by

f(x) = EP [F (x,ω)] =
Ω
F (x,ω)P (dω), (1.1)

where ω ∈ Ω can be considered an element of an underlying probability space (Ω,F , P)

with sample space Ω, sigma-field F , and probability measure P . It is assumed that the

probability distribution that defines the response F (x,ω) is unknown but can be sampled.

Even for noise-free system responses obtained via simulation, finding optimal solutions

using traditional optimization approaches can be difficult since the structure of f is un-

known, analytical derivatives are unavailable, and numerical evaluation of f may involve

2

expensive simulation runs. The presence of random variation further complicates matters

because f cannot be evaluated exactly and derivative approximating techniques, such as

finite differencing, become problematic. Estimating f requires the aggregation of repeated

samples of the response F , making it difficult to determine conclusively if one design is

better than another and further hindering search methods that explicitly rely on directions

of improvement. Multiple samples at each design point implies the necessity of extra com-

putational effort to obtain sufficient accuracy, thereby reducing the number of designs that

can be visited given a fixed computational budget.

Additional complications arise when elements of the design vector are allowed to be

non-continuous, either discrete-numeric (e.g. integer-valued) or categorical. Categorical

variables are those that can only take on values from a predefined list that have no ordinal

relationship to one another. These restrictions are common for realistic stochastic systems.

As examples, a stochastic communication network containing a buffer queue at each router

may have an integer-valued design variable for the number of routers and a categorical

design variable for queue discipline (e.g. first-in-first-out (FIFO), last-in-first-out (LIFO)

or priority) at each router; an engineering design problem may have a categorical design

variable representing material types; a military scenario or homeland security option may

have categories of operational risk. The class of optimization problems that includes con-

tinuous, discrete-numeric and categorical variables is known as mixed variable programming

(MVP) problems. In this research, discrete-numeric and categorical variables are grouped

into a discrete variable class by noting that categorical variables can be mapped to discrete

numerical values. For example, integer values are assigned to the queue discipline categor-

ical variable (e.g. 1 = FIFO, 2 = LIFO, and 3 = priority) even though the values do not

conform to any inherent ordering that the numerical value suggests.

3

This research considers the optimization of stochastic systems with mixed variables,

for which the continuous variable values are restricted by bound and linear constraints.

The target problem class is defined as,

min
x∈Θ

f(x) , (1.2)

where f : Θ → R is a function of unknown analytical form and x is the vector of design

variables from the mixed variable domain Θ. This domain is partitioned into continuous

and discrete domains Θc and Θd, respectively, where some or all of the discrete variables

may be categorical. Each vector x ∈ Θ is denoted as x = (xc, xd) where xc are the

continuous variables of dimension nc and xd are the discrete variables of dimension nd.

The domain of the continuous variables is restricted by bound and linear constraints Θc =

{xc ∈ Rnc : l ≤ Axc ≤ u}, where A ∈ Rmc×nc , l, u ∈ (R ∪ {±∞})mc

, l < u, and mc ≥ nc.

The domain of the discrete variables Θd ⊆ Znd is represented as a subset of the integers by

mapping each discrete variable value to a distinct integer. Furthermore, due to inherent

variation in the stochastic system, the function f cannot be evaluated exactly but must

be estimated via observations of F obtained from a representative model of the stochastic

system. Iterative search methods are necessarily affected by system noise such that the

sequence of iterates may be considered random vectors. Hence, the conventional notation

Xk to denote a random quantity for the design at iteration k is used to distinguish it from

the notation xk used to denote a realization of Xk.

Relaxation techniques commonly used for mixed-integer problems, such as branch-and-

bound, are not applicable to the mixed-variable case because the objective and response

functions are defined only at the discrete settings of the categorical variables; therefore,

relaxing the “discreteness” of these variables is not possible. Small numbers of categori-

cal variables can sometimes be treated by exhaustively enumerating their possible values,

4

but this approach quickly becomes computationally prohibitive. In this case, a common

approach is to conduct a parametric study, in which expert knowledge of the underlying

problem is applied to simply select a range of appropriate values, evaluate the objective,

and select the best alternative. Of course, this is a sub-optimal approach. Thus, it is de-

sirable to have an optimization method that can treat MVP problems rigorously.

1.2 Purpose of the Research

In designing appropriate solution algorithms for stochastic optimization problems, the

following characteristics are considered to be important.

1. Provably convergent. Convergent algorithms are desirable to guarantee that a search

procedure asymptotically approaches at least a local optimal solution when starting

from an arbitrary point. With random error present in objective function evaluation,

proving convergence requires additional assumptions and is typically established in

terms of probability (e.g. almost sure convergence).

2. General purpose. To ensure applicability to the widest possible range of problems,

the following conditions of an algorithm are desired.

a. It is valid over all combinations of variable types (i.e., MVP problems).

b. It requires neither knowledge of the underlying simulation model structure nor

modification to its code. Thus, it treats the model as a black-box function

evaluator, obtaining an output based on a set of controllable inputs.

3. Comparatively efficient. To make the algorithm useful and viable for practitioners,

the algorithm should perform well for some subclass of the target problem class (1.2)

in comparison to competing methods in terms of some performance measure (e.g., the

number of response samples or computer processing time required to achieve a specified

improvement in objective function value).

Various sampling-based search strategies have been applied to stochastic optimization

problems similar to (1.2). All of the methods discussed in Chapter 2 are deficient with

respect to at least one of the aforementioned convergence and/or general-purpose properties.

The focus of this research is sharpened by the following statement of the research problem.

5

1.2.1 Problem Statement

There exists no provably convergent class of methods for solving mixed-variable sto-

chastic optimization problems. Such methods should require neither knowledge of nor mod-

ification to the underlying stochastic model. Algorithmic implementations of these methods

should account for the practical need of computational efficiency.

1.2.2 Research Objectives

The purpose of this research is to rigorously treat problems of the type (1.2) in their

most general form (i.e., mixed variables and black-box simulation) while addressing the

need for computationally efficient implementations. The methodology extends a class of

derivative-free algorithms, known as pattern search, that trace their history to early at-

tempts to optimize systems involving random error. Modern pattern search algorithms

are a direct descendent of Box’s [33] original proposal to replace regression analysis of ex-

perimental data with direct inspection of the data to improve industrial efficiency [144].

Although pattern search methods have enjoyed popularity for deterministic optimization

since the 1960’s, only within the last decade has a generalized algorithm class been shown

to be convergent [143]. Even more recently, the class of generalized pattern search (GPS)

algorithms has been extended to problems with mixed variables [13] without sacrifice to the

convergence theory. Therefore, with respect to convergence and general-purpose properties,

GPS algorithms show great promise for application to mixed-variable stochastic optimiza-

tion problems. To this point in time, these methods have not been formally analyzed for

problems with noisy objective functions.

This research extends the class of GPS algorithms to stochastic optimization problems.

The approach calls for the use of ranking and selection (R&S) statistical methods (see [140]

6

for a survey of such methods) to control error when choosing new iterates from among

candidate designs during a search iteration. Specific objectives of the research are as follows.

1. Extend the GPS algorithmic framework to problems with noisy response functions by

employing R&S methods for the selection of new iterates. Prove that algorithms of

the extended class produce a subsequence of iterates that converges, in a probabilistic

sense, to a point that satisfies necessary conditions for optimality.

2. Implement specific variants within the GPS/R&S algorithm framework that offer

comparatively efficient performance. Implementation focuses on two general areas:

a. The use of modern ranking and selection methods that offer efficient sampling

strategies.

b. The use of surrogate functions to approximate the objective function as a means

to accelerate the search.

3. Test the specific methods on a range of appropriate test problems and evaluate

computational efficiency with respect to competing methods.

1.3 Overview

This dissertation document is organized as follows. Chapter 2 reviews the relevant

literature for sampling-based stochastic optimization and generalized pattern search meth-

ods, to include a discussion of convergence and generality properties. Chapter 3 presents a

new mixed-variable GPS/R&S algorithmic framework and attendant convergence theory.

Chapter 4 describes the specific algorithm options that were implemented for the testing

phase of the research. Chapter 5 presents the computational evaluation of algorithm imple-

mentations against competing methods over a range of analytical test problems. Chapter

6 offers conclusions, outlines the research contributions, and suggests directions for further

research.

7

Chapter 2 - Literature Review

Prior to investigating new methods to solve mixed-variable stochastic optimization

problems, a review of the existing literature is warranted. Section 2.1 surveys methods

applied to stochastic optimization problems, with particular emphasis on sampling-based

methods because of their applicability to optimization via simulation. The survey focuses

on methods that, in some way, address the desired properties outlined in Section 1.2, rela-

tive to the target class of problems (1.2). This review demonstrates that a gap exists in the

literature for treating general, mixed-variable stochastic optimization problems, which sets

the stage for the review of generalized pattern search methods in Section 2.2. Generalized

pattern search (GPS) methods, selected as the algorithmic foundation for treating the tar-

get problems (1.2) in this research, have been shown to be convergent for mixed-variable

deterministic optimization problems in a series of recent results. A chapter summary illus-

trates the need for rigorous methods to treat mixed-variable stochastic optimization prob-

lems and explains why an extension to generalized pattern search is a valid approach for

such problems.

2.1 Methods for Stochastic Optimization

Stochastic optimization may be defined in terms of randomness involved in either

or both of (a) the evaluation of the objective or constraint functions, or (b) the search

procedure itself [134, p. 7]. Throughout this document, stochastic optimization refers to

the former. A further distinction is made regarding the methods considered in this section.

In particular, methods usually grouped under the heading of stochastic programming are not

considered. Stochastic programming models typically assume that probability distributions

governing the data are known (or can be estimated) [117, p. 7]. This fact is often exploited

in constructing effective solution strategies. In the present problem setting, the probability

8

distribution of the response function is assumed to be unknown (although some limited

assumptions may be made) but can be sampled.

Most sampling-based methods for stochastic optimization can be grouped into one

of five categories: stochastic approximation, random search, ranking and selection, direct

search, and response surface methods. Each class of methods is described in the following

subsections. A more in-depth account of these and other methods is contained in a number

of review articles on simulation optimization [9,10,17,34,46,48,63,92,103,119,137,138].

2.1.1 Stochastic Approximation

Stochastic approximation (SA) is a gradient-based method that “concerns recursive es-

timation of quantities in connection with noise contaminated observations” [83]. In essence,

it is the stochastic version of the steepest descent method that rigorously accommodates

noisy response functions. These methods possess a rich convergence theory and certain

variants can be quite efficient [134, Chap. 7], but apply primarily to continuous domains

only, and therefore lack generality.

Early applications of SA to simulation-based optimization appeared in the late 1970s

(e.g. see [18]) and, since then, has been the most popular and widely used method for

optimization of stochastic simulation models [137]. The SA principle first appeared in

1951 in an algorithm introduced by Robbins and Monro [115] for finding the root of an

unconstrained one-dimensional noisy function. In general, SA applies to problems with only

continuous variables. A multivariate version of the Robbins-Monro algorithm, adapted from

[10, p. 317], is shown in Figure 2.1. In the algorithm, the sequence of step sizes ak (also

known as the gain sequence) must satisfy restrictions that are critical to the convergence

theory.

9

Robbins-Monro Stochastic Approximation Algorithm

Initialization: Choose a feasible starting point X0 ∈ Θ. Set step size a0 > 0 and suitable stopping
criteria.

Set the iteration counter k to 0.

1. Given Xk, generate an estimate γ̂(Xk) of the gradient ∇f(Xk).

2. Compute,

Xk+1 = Xk − akγ̂(Xk) . (2.1)

3. If the stopping criteria is satisfied, then stop and return Xk+1 as the estimate of the optimal

solution. Otherwise, update ak+1 ∈ (0, ak) and k = k + 1 and return to Step 1.

Figure 2.1. Robbins-Monro Algorithm for Stochastic Optimization (adapted
from [10])

Kiefer and Wolfowitz [68] extended the SA principle to finding the maximum of one-

dimensional noisy functions using central finite differences to estimate the derivative. Blum

[28] extended the Kiefer-Wolfowitz algorithm to the multi-dimensional case. The use of

finite differences to estimate the gradient in Step 1 of the algorithm in Figure 2.1 is often

called finite difference stochastic approximation (FDSA). Using central differences, the ith

element of the gradient is estimated at iteration k according to,

γ̂i(Xk) =
F̄ (Xk + ckei)− F̄ (Xk − ckei)

2ck
, i = 1, . . . , n, (2.2)

where ei is the ith coordinate vector and F̄ (Xk±ckei) denotes an estimate of f at Xk±ckei

for some perturbation setting ck > 0, perhaps a single sample or the mean of several samples

of F (Xk ± ckei,ω). Note the reliance of the perturbation parameter ck on k. As with the

gain sequence, the convergence theory relies on restrictions on the sequence ck.

A disadvantage of finite-differencing is that it can be expensive, requiring response

function samples at each of 2n design points (using central differences) to estimate the

gradient. An alternative, and more efficient, gradient estimator is based on the concept of

10

randomly selecting coordinate directions for use in computing γ̂(x). As a generalization of

a random direction method proposed in [44], Spall [132] derived the following simultaneous

perturbation gradient estimator for deterministic response functions,

γ̂i(Xk) =
F̄ (Xk + ckdk)− F̄ (Xk − ckdk)

2ckdki
, i = 1, . . . , n, (2.3)

where dk = [dk1, . . . , dkn] represents a vector of random perturbations and ck > 0 has

the same meaning as in (2.2). The convergence theory of this approach was subsequently

extended to noisy response functions in [133]. Through careful construction of the pertur-

bation vector dk, the simultaneous perturbation stochastic approximation (SPSA) method

avoids the large number of samples required in FDSA by sampling the response function at

only two design points perturbed along the directions dk and −dk from the current iterate,

regardless of the dimension n. The perturbation vector dk must satisfy certain statistical

properties defined in [134, p. 183]. Specifically, the {dki} must be independent for all k

and i, identically distributed for all i at each k, symmetrically distributed about zero, and

uniformly bounded in magnitude for all k and i. The most commonly used distribution for

the elements of dk is a symmetric Bernoulli distribution; i.e. ±1 with probability 0.5 [48].

The efficiency of SA algorithms can be enhanced further by the availability of direct

gradients; this led to a flurry of research in more advanced gradient estimation techniques

from the mid-1980s through the present day [48]. Specific gradient estimation techniques

include Perturbation Analysis (PA) [57], Likelihood Ratios (LR) [52], and Frequency Do-

main Experimentation (FDE) [124]. These methods often allow an estimate of the gradient

with only a single run of the simulation model. However, they require either knowledge of

the underlying structure of the stochastic system (for PA and LR) or additional modifica-

tions to a model of the system (for FDE) [10]. Therefore, when coupled with SA, they are

11

not considered sampling-based methods since the model cannot be treated as a black-box

function evaluator.

A well-established convergence theory for sampling-based SA methods dates back to

the early work of Kiefer and Wolfowitz [68]. In general, FDSA and SPSA methods generate

a sequence of iterates that converges to a local minimizer of f with probability 1 (almost

surely) when the following conditions (or similar conditions) are met [47]:

• Gain sequences: lim
k→∞

ak = 0, lim
k→∞

ck = 0,
∞

k=1

ak =∞, and
∞

k=1

a2k <∞.

• Objective function regularity conditions: e.g., continuously differentiable
and convex or unimodal in a specified region of the search space.

• Mean-zero noise: E [γ̂(Xk)−∇f(Xk)] = 0 for all k or in the limit as k →∞.
• Finite variance noise: variance of the noise in γ̂(Xk) is uniformly bounded.

The specific mathematical form of these conditions depends on algorithm implemen-

tation, assumptions about the problem, and the method of proving convergence. For a

coverage of the various approaches to the convergence theory, see [75], [83], or [134, Chap.

4, 6-7]. The restrictions on ak ensure that the sequence {ak} converges to zero but not

so fast as to converge to a sub-optimal value or too slow to avoid any convergence. The

harmonic series, ak = a/k for some scalar a, is a common choice [10, p. 318] for the gain

sequence. In practice, the convergence rate is highly dependent on the gain sequence as al-

gorithms may be extremely sensitive to the scalar parameter a such that a few steps in the

wrong direction at the beginning may require many iterations to correct [70]. The mean-

zero noise requirement ensures that the gradient estimate γ̂i is an unbiased estimate of the

true gradient, and the finite variance noise requirement typically ensures that the variance

of the noise in the gradient estimate cannot grow any faster than a quadratic function of x

[134, p. 106].

12

Stochastic approximation methods have been modified over the years to enhance per-

formance using step size selection rules to accelerate convergence. One alternative employs

a line search, a commonly used globalization strategy in deterministic nonlinear program-

ming in which the minimum value of the objective function is sought along the search

direction. This has been analyzed for use in SA by Wardi [149], for example, using Armijo

step sizes. Another alternative uses iterate averaging, which incorporates the use of infor-

mation from previous iterations and allows the gain sequence {ak} to decrease to zero at a

slower rate than 1/k. The analysis of Polyak and Juditsky [111] and Kushner and Yang [76]

shows how the slower decay rate of {ak} can actually accelerate SA algorithm convergence.

Stochastic approximation methods have also been extended to handle more compli-

cated problems. For problems with constraints, the algorithms may be modified by using a

penalty or a projection constraint-handling approach. The penalty approach was analyzed

in a FDSA context by Kushner and Clark [75, Sec. 5.1, 5.4] and in a SPSA context by

Wang and Spall [148]. Using this approach, the objective function is augmented with the

addition of a penalty term,

f(x) + rkP (x)

where the scalar rk > 0 increases with k and P (x) is a term that takes on positive values

for violated constraints. Penalty terms are well-suited for problems in which some of the

constraint functions require noisy response evaluations from the model, since it cannot

be determined prior to simulation if a design is feasible with respect to these constraints.

However, as in the deterministic case, penalty methods suffer from computational difficulties

due to ill-conditioning for values of rk that are too large [25, p. 369]. Additionally, these

methods can produce a sequence of infeasible designs that converge to the optimal (feasible)

solution only in the limit, particularly for values of rk that are too small. If the sampling

13

budget is severely restricted, this can result in a terminal solution with significant constraint

violations because the algorithm was not allowed enough of a budget to approach the feasible

region.

Projection approaches generate a sequence of feasible design points by replacing (2.1)

with

Xk+1 = ΠΘ(Xk − akγ̂(Xk)) (2.4)

where ΠΘ denotes projection onto the feasible domain Θ. Such methods are analyzed in

the FDSA context by Kushner and Clark [75, Sec. 5.3] and in the SPSA context by Sadegh

[118]. Projection methods are useful when all constraint functions are defined explicitly

in terms of the design variables so that response samples are not wasted in the process of

determining feasibility. However, these methods can typically handle only simple constraint

sets (e.g., bound and linear constraints) to facilitate mapping a constraint violation to the

nearest point in Θ [134, p. 195].

Although primarily applicable to continuous domains, a version of SPSA has been

developed for application to discrete domains of only integer-valued variables [50,51]. The

discrete version uses fixed gains (i.e., constant ak and ck) and approximates the objective

function with a smooth continuous function. The fixed step sizes force the iterates to lie

on the discrete-valued grid during the entire search.

2.1.2 Random Search

Random search methods sequentially step through the design space in a random man-

ner in search of better solutions. The general algorithm selects a candidate design point

probabilistically from the neighborhood of the incumbent design point and chooses the in-

cumbent or candidate as the next iterate based on a specified criteria. An attractive feature

of random search methods is that the flexibility of the neighborhood construct allows for

14

the treatment of mixed variables, so they are very general. However, convergent versions

of random search exist primarily for discrete-only domains (e.g., [11]).

A general random search algorithm is shown in Figure 2.2. In the algorithm, F̄ (Xk)

denotes an estimate of f(Xk), perhaps a single sample or the mean of a number of samples

of F (Xk,ω). The algorithm relies on several user-defined features. In Step 1, a candidate

is drawn from a user-defined neighborhood N(Xk) of the current iterate Xk. Step 1 also

requires the selection of a probability distribution that determines how the candidate is

chosen. Appropriate acceptance criteria must be defined in Step 2.

An advantage of random search is that the neighborhood N(Xk) can be defined either

locally or globally throughout the design space. In fact, random search is a popular method

for global optimization (e.g., see [155]). In either case, N(Xk) must be constructed to

ensure the design space is connected [11] (i.e., it is possible to move from any point in Θ to

any other point in Θ by successively moving between neighboring points). Neighborhood

construction depends in large part on the domain Θ. Random search is flexible in that

it can accommodate domains that include any combination of continuous, discrete, and

Random Search Algorithm

Initialization: Choose a feasible starting point X0 ∈ Θ and generate an estimate F̄ (X0). Set a
suitable stopping criteria.

Set the iteration counter k to 0.

1. Generate a candidate point Xk = N(Xk) ∈ Θ according to some probability distribution and
generate an estimate F̄ (Xk).

2. If F̄ (Xk) satisfies acceptance criteria, then set Xk+1 = Xk. Otherwise, set Xk+1 = Xk.

3. If the stopping criteria is satisfied, then stop and return Xk+1 as the estimate of the optimal

solution. Otherwise, update k = k + 1 and return to Step 1.

Figure 2.2. General Random Search Algorithm (adapted from [11])

15

categorical variables. For an entirely continuous Θ, a local neighborhood may be defined

as an open ball of a specified radius about the incumbent (e.g., [19, 87]). Alternatively, a

global definition may allow a neighbor to assume any value for each design variable within

a specified range if the problem’s only constraints are variable bounds (e.g., [131]). For an

entirely discrete Θ, a local definition for N(Xk) may include the nearest grid points (in a

Euclidean sense) from the incumbent (e.g., [7]), whereas a global definition may allow all

admissible combinations of discrete settings for the design vector as neighbors (e.g., [8,154]).

If Θ has both continuous and discrete components, a hybrid neighborhood structure can

be used (see [67] and [120]). Although the random search literature does not appear to

explicitly account for categorical variables in a mixed-variable context, the flexibility of

neighborhood structures certainly admits such a construct.

Once a neighborhood structure is determined, the method for sampling randomly from

the neighborhood must be defined. The simplest approach is a random draw uniformly

distributed so that each point in the neighborhood has equal probability of selection [134,

p. 38]. This method can be broadly implemented for either continuous or discrete domains.

As an alternative example of a local method in a continuous domain, Matyas [87] suggested

perturbing the incumbent design randomly, Xk = Xk+dk, where dk is distributed normally

with a mean zero vector and covariance matrix equal to the identity matrix In. That is,

each element of the design vector is randomly perturbed from its incumbent value according

to a normal distribution with mean zero and unit variance. Such blind search methods do

not use information learned during the search to improve neighbor selection. Additional

methods employ adaptive techniques that combine random sampling with knowledge gained

during the search to enhance selection.

16

Matyas [87] suggested a modification to the normally distributed perturbation vector

that allows the mean vector and correlation matrix of the perturbations to vary by consid-

ering results of preceding iterations. Solis and Wets [131] present a similar method in which

the mean of the perturbation vector is a bias vector bk, updated after every iteration, that

“slants the sampling in favor of the directions where success has been recorded” [131, p. 25].

The acceptance criteria required in Step 2 of Figure 2.2 are the most critical of the

user-defined features in the presence of noisy responses. For the deterministic case, these

criteria may simply require improvement in the objective function, f(Xk) < f(Xk), where

Xk ∈ N(Xk). Alternatively, moves that fail to yield an improvement may be accepted with a

specified probability that decreases with iteration count, such as in simulated annealing [49].

Additional considerations are required for noisy response functions to build in robustness

to the noise.

Two basic strategies discussed in [134, pp. 50-51] are averaging and acceptance thresh-

olds. Using averaging, the mean from a number of response samples from the incumbent

and the candidate design points are used in place of true function values. The approach

more adequately accounts for variation by using an aggregate measure, but adds compu-

tational expense. Using thresholding, a candidate design point is accepted if it satisfies

F (Xk,ω) < F (Xk,ω) − τk, where τk is an acceptance threshold. Using a threshold ap-

proximately equal to two standard deviations of the estimated response noise implies that

only design points with two-sigma improvement are accepted. However, overly conservative

thresholds can lead to many rejections and therefore slow convergence.

For continuous domains and noisy response functions, formal convergence proofs for

random search methods are rare [134, p. 50]. Yakowitz and Fisher [153, Sect. 4] provide

an exception by establishing a convergent method via repeated sampling at design points

17

to minimize the effect of error. For discrete domains with a finite number of points, much

recent work has led to several convergent methods. A number of specific methods that

include simulated annealing methods are discussed in [11].

In an entirely discrete domain, the random search framework enables the sequence of

designs visited to be modeled as a discrete time Markov chain, each iterate representing a

state visited by the chain. This fundamental property is key to proving asymptotic con-

vergence as the number of iterations goes to infinity. The strength of the result generally

depends on how the optimal solution is estimated; the usual choices being the most fre-

quently visited solution or the current solution under consideration [46].

Methods that estimate the solution using the current design point are able only to

show that the sequence of iterates converges in probability to an optimal solution; i.e.,

lim
k→∞

P{X∗k ∈ Θ∗} = 1

where Θ∗ ⊆ Θ is the set of global optimal solutions and X∗k ∈ Θ is the estimate of the

optimal solution. In order for this sequence to converge, the methods require statistical

evidence that trial moves will result in improvement, where the strength of the evidence

grows with the number of iterations [11]. For simulated annealing type algorithms, this

is accomplished by decreasing the temperature parameter to zero as iterations increase

to infinity. For more traditional random search methods, this is accomplished by forcing

candidate solutions to pass an increasing number of trials as iterations accumulate. The

number of trials per iteration increases to infinity as iterations increase to infinity.

Methods that use the most frequently visited solution as the estimated optimal solution

do not require the progressively conservative moves discussed in the preceding paragraph.

In these cases, the sequence of iterates generated by the algorithm do not converge at

all (they are irreducible, time-homogeneous, and positive recurrent Markov chains) [11].

18

However, the sequence defined by {X∗k}, where X∗ is the solution that the Markov chain

{Xk} has visited most often after iterations, can be shown to converge almost surely to

an optimal solution [8]; i.e.,

P{ lim
k→∞

I{X∗k∈Θ∗} = 1} = 1

where the indicator IA equals one when the event A occurs and zero otherwise. This is a

stronger result than convergence in probability.

2.1.3 Ranking and Selection

Ranking and selection (R&S) procedures are “statistical methods specifically developed

to select the best system, or a subset of systems that includes the best system, from

a collection of competing alternatives” [53, p. 273]. These methods are analogous to

exhaustive enumeration of combinatorial optimization problems in which each of a small

number (≤ 20) of alternatives can be simulated. Ranking and selection procedures are

typically grouped into a larger class of statistical procedures that also includes multiple

comparison procedures [53]. The coverage of R&S procedures in this literature review

results from the fact that they have recently been incorporated within iterative search

routines applied to stochastic optimization via simulation, which is also how they are used

in this research.

Two general R&S approaches are indifference zone and subset selection [46]. Indifference-

zone procedures guarantee selection within δ of the true best solution with user-specified

probability 1− α where δ represents a measure of practical difference known as the indif-

ference zone. The parameter δ is called the indifference zone parameter . These approaches,

using a single stage or multiple stages of sampling, collect response samples from the alter-

natives, check a certain stopping criteria, then either continue sampling or stop and select

19

the alternative with the smallest response estimate in the final stage [139]. The original

procedure by Bechhofer [26] is a single-stage procedure in which the number of samples

required of each solution is determined a priori according to a tabular value related to the

experimenter’s choice of δ and α. Bechhofer’s method assumed a known and equal variance

in response samples across all alternatives. Dudewicz and Dalal [42] and Rinott [114] ex-

tended the approach to problems with unknown and unequal response variances by using

an initial stage of sampling to estimate variances. These estimates are used to prescribe

the number of second-stage samples needed to ensure the probability of correct selection.

This concept can be extended to many stages in which the early stages use a predetermined

number of samples in order to estimate the number of samples required in the final stage

to make a selection. Subset selection is very similar to indifference-zone selection, with the

exception that a selected subset of at most m systems will contain at least one system with

a response within δ of the optimal value.

To define the requirements for a general indifference-zone R&S procedure, consider a

finite set {X1,X2, . . . ,XnC} of nC ≥ 2 candidate design points. For each i = 1, 2, . . . , nC ,

let fi = f(Xi) = E[F (Xi,ω)] denote the true objective function value. The fi values can

be ordered from minimum to maximum as,

f[1] ≤ f[2] ≤ · · · ≤ f[nC].

The notation X[i] indicates the candidate with the ith best (lowest) true objective function

value. If at least one candidate has a true mean within δ of the true best, i.e. f[i]− f[1] < δ

for some δ > 0 and i ≥ 2, then the procedure is indifferent in choosing X[1] or X[i] as

the best. The probability of correct selection (CS) is defined in terms of the δ and the

20

significance level α ∈ (0, 1), as

P{CS} = P select X[1] | f[i] − f[1] ≥ δ, i = 2, . . . , nC ≥ 1− α, (2.5)

where δ and α are user specified. Since P{CS} = 1
nC
is guaranteed simply by choosing

randomly from the alternatives, the significance level must satisfy 0 < α < 1− 1
nC
.

Traditional multi-stage indifference-zone procedures can be too computationally cum-

bersome to accommodate a large set of candidates because they are based on the least

favorable configuration assumption that the best candidate has a true mean exactly δ bet-

ter than all remaining candidates, which are tied for second best [140]. As a result, the

procedures can overprescribe the number of samples required in the final stage in order to

guarantee that (2.5) holds. Two recent directions in R&S research reflect attempts to ad-

dress this issue. The first has been to combine a search strategy with R&S to enable a global

search of a possibly large solution space. As examples, Ólafsson [102] and Pichitlamken and

Nelson [110] each introduce an iterative technique that combines R&S with a global opti-

mization strategy known as nested partitioning (NP), which is used to adaptively search

the feasible space of (possibly large) combinatorial problems. In each approach, a discrete

time Markov chain analysis is used to show almost sure convergence to a global optimum

of the discrete and finite variable space. Ahmed and Alkhamis [4] describe and analyze a

globally convergent algorithm that embeds R&S procedures within simulated annealing for

optimization over a discrete domain. Boesel et al. [29] and Hedlund and Mollaghasemi [56]

combine R&S procedures with genetic algorithms.

The second trend has been to invent more modern procedures that, through enhanced

efficiency in terms of sampling requirements, can accommodate a larger number of solutions.

One such procedure combines subset selection with indifference-zone selection as a means

to screen out noncompetitive solutions and then select the best from the survivors. A

21

general theory is presented by Nelson et al. [99] that balances computational and statistical

efficiency. This approach maintains a probability guarantee for selecting the best solution

when using the combined procedure. Another procedure, by Kim and Nelson [69], is a

so-called fully sequential procedure, which is one that takes one sample at a time from

every alternative still in play and eliminates clearly inferior ones as soon as their inferiority

is apparent. After an initial stage of sampling, a sequence of screening steps eliminates

alternatives whose cumulative sums exceed the best of the rest plus a tolerance level.

Between each successive screening step, one additional sample is taken from each survivor

and the tolerance level decreases.

Categorical variables are readily handled by modern R&S techniques since all design

alternatives are determined a priori and corresponding variable values can be set accord-

ingly. However, the limited capacity of R&S restricts the number of solutions that can be

considered to a discrete grid of points in the solution space, so that thorough exploration

of this space is not possible. The existing provably convergent techniques [4,102,110] that

combine R&S with adaptive search currently address entirely discrete domains. Continu-

ous variables can be dealt with via a discretization of the variable space, but this can lead

to a combinatorial explosion of the search space and an increase in computational expense.

2.1.4 Direct Search

Direct search methods involve the direct comparison of objective function values and

do not require the use of explicit or approximate derivatives. For this reason, they are easily

adapted to black-box simulation, demonstrating some inherent generality properties. This

feature has led to their use as sampling-based methods for stochastic optimization, which

is documented in this section. However, direct search methods for stochastic optimization

have only considered unconstrained problems with continuous variables. The GPS class of

22

algorithms, which are a subset of direct search methods, are more general than the classical

methods covered in this section, but have yet to applied to stochastic problems. Since GPS

methods are the cornerstone of this research, they are covered in more detail in Section 2.2.

Interestingly, direct search methods evolved from efforts to optimize systems involving

random error. In conjunction with his early work in the field of RSM, Box proposed a

method for improving industrial efficiency known as evolutionary operation (EVOP) [33]

in the mid-1950s. Intended as a simple tool that could be used by plant personnel, the

estimation of regression models was replaced by direct inspection of data according to the

“patterns” of the experimental design [144]. Spendley, Hext, and Himsworth [136] suggested

an automated procedure of EVOP for use in numerical optimization and replaced factorial

designs with simplex designs. Several more direct search methods were proposed in the

1960s [152] and include the well-known direct search method of Hooke and Jeeves [60]

and the simplex method of Nelder and Mead [98], which is an extension of the method

of Spendley et al. At the time, these methods were considered heuristics with no formal

convergence theory [1, p. 22]. Research on direct search methods faded during the 1970s

and 1980s but were revived in the 1990s with the introduction and convergence analysis of

the class of pattern search methods for unconstrained optimization problems by Torczon

[143].

In general, traditional direct search methods are applicable to continuous domains

and are easily adapted to stochastic optimization because they rely exclusively on response

function samples. Perhaps the most frequently used direct search methods for stochastic

optimization are the Nelder-Mead simplex search and Hooke-Jeeves pattern search. The

Nelder-Mead method conducts a search by continuously dropping the worst point from a

simplex of n + 1 points and adding a new point. A simplex is a convex hull of a set of

23

n + 1 points not all lying in the same hyperplane in Rn [24, p. 97]. During a search

iteration, the geometry of the simplex is modified by expansion, reflection, contraction, or

shrinking operations that are triggered based on the relative rank of the point added at that

iteration. Figure 2.3, based on [141, pp. 5-7] depicts the Nelder-Mead search procedure.

In the algorithm, F̄ (Xk) denotes an estimate of f(Xk), perhaps a single sample or the

mean of a number of samples of F (Xk,ω). The algorithm relies on several parameters that

determine how the geometry is refined during the search. Common parameter choices are

η = 1, γ = 2, β = 1
2 , and κ = 1

2 .

Nelder-Mead Search

Initialization: Choose a simplex of feasible points S0 = {X1,X2, . . . ,Xn+1} ∈ Θ and generate

estimates F̄ (X1), F̄ (X2), . . . , F̄ (Xn+1). Reorder the set S0 so that F̄ (X1) ≤ F̄ (X2) ≤ · · · ≤
F̄ (Xn+1). Set reflection parameter η, expansion parameter γ, contraction parameter β, and shrink
parameter κ. Set a suitable stopping criteria.

Set the iteration counter k to 0.

1. If necessary, reorder Sk so that F̄ (X1) ≤ F̄ (X2) ≤ · · · ≤ F̄ (Xn+1). Find the centroid of the n
best points in Sk, Xcen = n

−1 n

i=1
Xi. Generate reflected point Xref = (1 + η)Xcen − ηXn+1 and

estimate F̄ (Xre f).

2. If F̄ (Xre f) ≥ F̄ (X1), then go to Step 3. Otherwise, generate expansion point Xexp = γXre f +(1−
γ)Xcen and estimate F̄ (Xexp). If F̄ (Xexp) < F̄ (X1), then set X1 = Xexp ; otherwise, set X1 = Xre f .

Go to Step 6.

3. If F̄ (Xref) > F̄ (Xn), then go to Step 4. Otherwise, set Xn+1 = Xref and go to Step 6.

4. If F̄ (Xref) ≤ F̄ (Xn+1), then set Xn+1 = Xref . Otherwise, retain the current Xn+1. Go to Step 5.

5. Generate contraction point Xcon = βXn+1 + (1 − β)Xcen and estimate F̄ (Xcon). If F̄ (Xcon) <
F̄ (Xn+1), then set Xn+1 = Xcon ; otherwise, shrink the entire simplex toward X1 by setting Xi =
κXi + (1− κ)X1 for i = 2, . . . , n+ 1. Go to Step 6.

6. If the stopping criteria is satisfied, then stop and returnX1 as the estimate of the optimal solution.

Otherwise, set Sk+1 = Sk and reorder Sk+1 (if necessary) so that F̄ (X1) ≤ F̄ (X2) ≤ · · · ≤ F̄ (Xn+1).
Update k = k + 1 and return to Step 1.

Figure 2.3. Nelder-Mead Search (adapted from [141])

24

Although the Nelder-Mead algorithm possesses no general convergence theory [152], it

generates a search path with some inherent robustness for problems with noisy responses,

due to its reliance on the relative ranks of the vertices in the simplex [142] (as opposed to

precise estimates). However, this very feature may also cause the algorithm to terminate

prematurely. Premature termination results when large random disturbances in the func-

tional response change the relative ranks of the function values in the simplex and inappro-

priately affect the scaling steps [23]. An early attempt to mitigate inappropriate scaling was

carried out by Barton [20], who compared a variant of the method to three other methods

(including an unmodified Hooke-Jeeves search) to minimize functions with random noise

using Monte Carlo simulation. In Barton’s approach, points are sampled once; however, a

reflected point is resampled if it is found worse than the two poorest values from the previ-

ous simplex. After resampling, if a different point is the worst, then the new worst point is

used in a new reflection operation. Barton and Ivey [22,23] introduced three Nelder-Mead

variants with the goal of avoiding false convergence. The first variant (called S9) simply

increases the shrink parameter κ from 0.5 to 0.9. The second variant (RS) resamples the

best point after a shrink step before determining the next reflection. The third variant

(PC) resamples Xref and Xn if a contraction is indicated in Step 3 in Figure 2.3 and these

two points are compared to each other again without reordering the ranks of the remain-

ing points (if they change). If F̄ (Xref) > F̄ (Xn) still holds, then contraction is performed

as normal; otherwise, Xref is accepted as the new point in the simplex and contraction is

bypassed. Based on empirical results, Barton and Ivey concluded that a combination of

variants S9 and RS provide statistically significant improvements over the unmodified pro-

cedure, reducing the deviation between the terminal solution and known optimal solution

relative to the standard method by an average of 15% over 18 test problems.

25

Tomick et al. [142] suggested further modifications to Nelder-Mead for noisy responses.

In their approach, each point in the simplex is averaged overmk samples per iteration where

mk is adjusted from the previous iteration based on a statistical test on the hypothesis of

equal response means across all points of the simplex. If the test is accepted (rejected),

sample size is increased (decreased) by a constant factor. This method, which includes

the shrink parameter increase (S9) of Barton and Ivey [22, 23], reduced the deviation of

the terminal solution from the known optimal solution to less than 20% of the starting

value for each of the 18 test problems. Finally, Humphrey and Wilson [61, 62] present a

Nelder-Mead variant with three phases in which (a) the terminal point from one phase

becomes the starting point for the next phase, (b) the distance between initial simplex

points decreases geometrically and the shrink parameter increases linearly with each phase,

and (c) the solution is taken as the best of the terminal points from the three phases. Each

phase represents a restart of the basic Nelder-Mead procedure where the increase in the

shrink parameter serves to protect against premature termination. In comparison to the

algorithm of Barton and Ivey [22, 23] (that included the RS and S9 modifications) for six

test problems with known solutions, this procedure found a more accurate solution for five

of them while expending approximately equal computational effort.

The Hooke-Jeeves method conducts a search via a series of exploratory and pattern

moves through the solution space. During a search iteration, exploratory moves are con-

ducted locally along the coordinate axes, and pattern moves are conducted along the direc-

tion defined by the starting and ending points of exploratory moves. In a simulation-based

application, Nozari and Morris [101] applied the Hooke-Jeeves pattern search in conjunc-

tion with the two-stage R&S procedure of Dudewicz and Dalal [42]. In the approach, the

R&S procedure is used in the exploratory search step in order to find which candidate along

26

any of the coordinate axes produces the best solution. The direction from the incumbent

to the chosen candidate solution is then used as the pattern search direction. Nandkeol-

yar and Christy [96] implemented a Hooke-Jeeves algorithm with a modified step size up-

date rule in which only statistically significant improvements in the response function are

recognized. Pegden and Gately implemented an optimization module using Hooke-Jeeves

pattern search into the GASP [106] and SLAM [107] simulation languages. In both imple-

mentations, a standard statistical test is used in the comparison of response means before

selecting new iterates. The method starts, stops, and continues one long simulation run for

each design point, comparing the means of numerous batches, until the difference in means

is statistically significant. In addition to Barton [20], Lacksonen [77] evaluated the Hooke-

Jeeves method in a comparison with other methods. Lacksonen increased the number of

samples for candidate points as the step length parameter decreased in order to improve

precision of the estimate but no formal statistical test was used. Sample sizes of one, four,

and seven were used for the prespecified step length values, terminating the algorithm when

exploratory search failed to find an improving solution.

Direct search methods do not possess a general convergence theory in the stochastic

setting, with one notable exception. In [6], Anderson and Ferris introduce a search algo-

rithm that operates on a set of points (called a structure) in a continuous variable domain

with noisy function evaluations. The algorithm converges almost surely to a stationary

point of a uniformly Lipschitz, continuously differentiable objective function. The opera-

tions on the structure are similar to those of the Nelder-Mead algorithm but differ in that,

for each reflection, expansion, and contraction operation, all points except the best point

of the structure are repositioned, whereas, in Nelder-Mead, only a single point is reflected

or expanded. A key assumption in algorithm convergence is that the random error in the

27

responses tends to zero faster than the step length (representing the size of the structure).

In practice, this is accomplished via increased samples. Interestingly, the authors note that

the convergence proof is dependent on the characterization of random error and, in fact,

fails in the absence of error. In these cases, they claim that the method is a generalized

pattern search method1 and convergence is guaranteed by the analysis of [143].

2.1.5 Response Surface Methods

Response surface methods (RSM) are broadly defined as “statistical and mathematical

techniques useful for developing, improving, and optimizing processes” [94, p. 1]. When

used for optimization, these methods fit a smooth surface to response values obtained from

a sampling of design points. This surface, called a response surface, metamodel, or surrogate

function, may be searched inexpensively using traditional deterministic methods in order to

explore the search space. Since constructing response surfaces depends on the availability

of response samples, RSM is easily applied to black-box simulation. These methods can

be applied directly to solve stochastic optimization problems or can be used to augment

more rigorous procedures as a means to improve the search. For example, Booker et al.

[32] describe the use of response surfaces within a pattern search framework as a means

to accelerate the search. Since response surfaces will be used in the implementation of the

algorithms developed in this research (Section 4.2), a broad coverage of RSM for stochastic

optimization is presented in this section.

Due to the breadth of its application, the research literature on RSM is vast. In

application to stochastic optimization via simulation, its history dates back to the early

1970s (e.g., [123,130]). The basic RSM approach calls for solving a sequence of optimization

problems in which the true objective function is approximated by a response surface. The

1Note: This is true if the incumbent solution is defined as the centroid of the structure and candidate

solutions are the surrounding points of the structure.

28

process begins by establishing a prespecified number of design points in a region of the

search space according to an experimental design. Sampled responses are obtained for each

point and a local response surface is built in the region. Information from the response

surface is used to guide the search to a new region and the process is repeated until reaching

a stopping criterion. Alternatively, the response surface can globally approximate the true

objective function, and intermediate design points sampled during the search can be used

to enhance the accuracy of the global approximation. The primary issues involved in the

process include [21]:

• the choice of a functional form of the response surface,

• the choice of an experimental design to select points from the design space, and
• the method for assessing of the adequacy of the fitted model (e.g., lack of fit or
mean squared error).

To fit a response surface, response samples must be collected from some set of design

sites (points in the design space) X1, . . . ,XN . Let F̄i denote the response at site Xi where

F̄i may represent a single response or the mean of a set of responses. The input/output

relationship for the {(Xi, F̄i)}Ni=1 data points is often modeled as a deviation from the true

objective function,

F̄i = f(Xi) + εi, i = 1, . . . ,N

with observation errors εi. Methods for fitting the data points to a response can be divided

into two general classes, parametric and nonparametric methods [55, p. 4]. Parametric

methods assume the underlying function f has a prespecified functional form (e.g., a poly-

nomial) fully described by a set of parameters. Nonparametric methods make minimal

assumptions regarding the structure of f . Examples of each class of methods will be briefly

described in the following paragraphs.

29

Traditional response surface methods (e.g., [94]) typically use parameterized polyno-

mials where regression is used to fit the response surface. These methods typically fit a

function f̂ using a linear model (2.6) or a quadratic model (2.7),

f̂(x) = β0 +
n

i=1

βixi, (2.6)

f̂(x) = β0 +
n

i=1

βixi +
n

i=1

n

j=i

βijxixj (2.7)

where the parameters β0, βi, βii, and βij, i = 1, . . . , n, j = i, . . . n, are determined through

least squares regression which minimizes the sum of the squared deviations of the predicted

values from the actual values [94]. After the response surface is built, then the method of

steepest descent is typically used, where the search direction is chosen as the negative of

the gradient. Under the linear model, the gradient is simply ∇f̂(x) = [β1,β2, . . . ,βn]T , and

under the quadratic model, ∇f̂(x) = [∂f̂
x1
, ∂f̂
x2
, . . . , ∂f̂

xn
]T , where ∂f̂

xi
= βi + 2βiixi +

n

i=1
i=j

βijxj .

In application to simulation-based optimization, much of the research in polynomial

based RSM prior to 1990 is summarized in Jacobson and Schruben [63], in which several

improvements are discussed such as screening for variable reduction, allowance for multiple

objectives, constraint-handling via the methods of feasible directions and gradient projec-

tion, variance reduction via common and antithetic pseudorandom numbers, and the effects

of alternative experimental designs. More recently, Joshi, et al. [66] introduced gradient

deflection and second-order search strategies to the RSM approach. This method retains

information from previous iterations and builds knowledge of second-order curvature of the

objective function, thereby avoiding the zigzagging experienced by steepest descent. An-

other approach by Angün et al. [12] generalizes the method of steepest descent search

direction to multiple responses using an interior point approach with an affine scaling algo-

30

rithm and projection. The method derives a scale independent search direction and several

step sizes that enables the algorithm to reach a neighborhood of the optimum in a few

simulation runs. Finally, Abspoel et al. [3] present an approach that uses sequential linear

programming with move limits [25, p.432] in concert with polynomial regression for prob-

lems with random objective functions and constraints over an integer variable domain.

Another parametric model fitting approach is known as kriging. The kriging approach

builds a response surface via the combination of a fixed function g(x) and departures from

the fixed function in the following form [91]:

f̂(x) = g(x)+Z(x),

where Z(x) is a realization of a stochastic process with mean zero and a spatial correlation

function. The underlying model g(x) globally approximates the true function and is typi-

cally taken to be a constant but can be a general function with its own parameters. The

Gaussian spatial correlation function is given by

Cov [Z(Xi), Z(Xj)] = σ2R(Xi,Xj),

where Xi and Xj are two of N design sites, σ2 is the process variance, and R is the N ×N

correlation matrix. A commonly used correlation matrix has ones along the diagonals and

the following off-diagonal elements [72]:

R(Xi,Xj) = exp −
n

k=1

θk X
k
i −Xk

j

2

where θk are the parameters used to fit the model and X
k
i is the kth components of sample

point Xi. With this function, each predicted point is essentially a linear combination of

exponentially decaying functions that are based on the spatial distance between Xk
i and

Xk
j .

31

Kriging models have gained popularity in optimization methods for expensive deter-

ministic simulation (e.g., [32,128,129,147]). Recently they have been applied toward prob-

lems involving randomness [65,73].

The use of artificial neural networks (ANNs) may also be considered response surface

approximation methods. ANNs are modelled after neurons of the human brain and consist

of an input layer, an output layer, and a series of hidden inner layers [54]. They can use

noisy response samples to approximate arbitrary smooth functions [21]; therefore, they may

be considered nonparametric fitting methods. A comprehensive introduction to ANNs can

be found in [150].

The presence of inner layers allow the ANN to learn nonlinear relationships between

input and output quantities. In an optimization problem, the input quantities represent

sampled design point values and the output quantities represent responses. Each neuron

in an ANN has an activation function (sigmoid function or step function) with associated

weight parameters that are analogous to regression parameters in polynomial regression.

The ANN is trained on the sampled design points by finding values for the weights that

minimize an error function that quantifies the difference between actual response values

and values predicted by the ANN. In this manner, the ANN is a predictive tool that

produces new output (response) values for new input values. This method has been used, for

example, by Laguna and Marti [78], in application to optimization via stochastic simulation

of a jobshop. In their approach, the ANN is trained during the course of the search and

then used to filter out candidate designs that are predicted to be inferior before expending

response samples for those designs.

Another nonparametric fitting method is known as kernel regression or kernel smooth-

ing. Härdle [55] provides a detailed coverage of these methods, with particular attention

32

paid to the case of noisy responses (see [55, Sect 2.1] for a discussion). The cornerstone of

kernel regression is the Nadaraya-Watson estimator [95,151], which is used to approximate

the objective function at a point x according to,

f̂(x) =

N

i=1

F̄iKh(x−Xi)
N

i=1

Kh(x−Xi)
(2.8)

where Kh is an appropriately selected kernel function that depends on parameter h and the

distance from x to each design site. As it has its origins in probability density estimation,

the kernel function must integrate to unity; i.e.,
+∞
−∞ Kh(x) = 1. The estimate f̂ can be

thought of as the weighted average of all response samples, F̄i, where the weight received

by F̄i depends on Kh, the distance (x−Xi), and the smoothing parameter h. The kernel

function Kh determines the “shape” of the weights and h determines the “size” of the

weights. For numerical reasons, kernel functions typically take on mound-shaped forms

that are zero outside some fixed interval [55, p. 25], such as the parabolic Epanechnikov

kernel [43] or a Gaussian. Kernel regression has been used iteratively within a stochastic

approximation framework (e.g., [97]) for the purpose of recursively estimating the root of

a noisy function.

Additional fitting methods have been proposed to approximate functions that will

simply be mentioned here. One such method is known as multivariate adaptive regression

splines (MARS) [64]. This method adaptively selects a set of basis functions for approx-

imating the response function through a forward/backward iterative approach. Another

method involves the use of radial basis functions [64]. This method uses linear combina-

tions of a radially symmetric function based on the Euclidean distance or a similar metric

to approximate the response functions.

33

There is no general convergence theory for RSM methods. Indeed, this would be dif-

ficult to establish in its pure form since optimization is performed on an approximation of

the true objective function. Even in the absence of random noise, the approximate model

contains inaccuracies which are exacerbated if the true function is highly nonlinear. Fur-

thermore, due to their interpolatory nature, the methods are usually restricted to entirely

continuous domains. However, extensions to integer variables are possible by relaxing in-

tegrality constraints on the approximate model and ensuring that solutions encountered

during the search are mapped to admissible discrete points in the search space (e.g., [3]).

This approach is unsuitable with respect to categorical variables, necessitating the con-

struction of an independent response surface for each combination of categorical variable

settings, resulting in escalating computational requirements.

2.1.6 Other Methods

A brief mention of other methods used for stochastic optimization is warranted, par-

ticularly since most commercially available simulation software packages that offer some

optimization functionality do not use the methods of the previous sections. Rather, most

packages use heuristic search procedures [48, Table 1].

A search heuristic is a “technique which seeks good (i.e. near-optimal) solutions at a

reasonable computational cost without being able to guarantee feasibility or optimality, or

even in many cases to state how close to optimality a particular feasible solution is [112, p.

6]”. Heuristics typically use random or deterministic sampling as a tool to guide exploitive

search techniques that are more efficient than pure random sampling [54]. Examples of

search heuristics include evolutionary algorithms (genetic algorithms, evolutionary strate-

gies and evolutionary programming), scatter search, tabu search, and simulated annealing.

Most heuristics are devised with mechanisms to enable global search and escape local min-

34

ima; hence, they have found successful application for large, nonconvex, and combinatorial

problems. In recent years, the use of search heuristics for stochastic optimization via simu-

lation has grown rapidly, evident by its dominance in software. This, in part, is a reflection

of their relative ease of use and generality (they can easily be adapted to mixed-variable

problems and require only black-box response samples). However, their application to sto-

chastic problems has been largely unmodified from their original form, relying on inherent

robustness to noise rather than explicitly accounting for noise [48].

2.1.7 Summary of Methods

Of the methods presented in this section, stochastic approximation possesses the rich-

est convergence theory. However, since these methods represent a class of gradient-based

methods, they are geared toward problems with continuous variables. In theory, problems

with a mix of integer and continuous variables (mixed-integer problems) could be addressed

via methods that iteratively solve subproblems in which some integrality restrictions are

relaxed, such as branch-and-bound. However, there is little evidence from the literature

that such approaches have been applied in conjunction with SA and, in fact, only in limited

applications has SA been extended to problems with only integer-valued variables [50,51].

Random search methods are the most general methods that possess some convergence re-

sults, but a general convergence theory over a mixed-variable domain has not been estab-

lished. Ranking and selection procedures inherently provide a sense of convergence via

probability guarantees, but if applied unmodified, are only able to accommodate a small,

discrete set of designs. Direct search methods that have been applied to stochastic opti-

mization have, thus far, not considered a mixture of variable types nor do they yet possess

a general convergence theory. Finally, response surface methods, while useful for model-

ing and analyzing the input/output relationship between design variables and responses,

35

do not possess convergence properties and apply, in general, to continuous variables only.

However, they can provide a useful means to improve more rigorous methods.

This review illustrates the need for convergent algorithms that can treat general,

mixed-variable optimization problems with noisy response functions. The generalized pat-

tern search class of algorithms, reviewed in the following section, has been shown to be

convergent for deterministic optimization problems in a series of recent results. These

methods will provide the basis for a convergent class of algorithms in this research.

2.2 Generalized Pattern Search

In recent years, research in direct search theory has led to several results for the

subclass of direct search algorithms known as pattern search. This section describes the

various pattern search approaches found in the literature, beginning with the unconstrained

case over continuous variables and followed by extensions to more difficult problem settings.

2.2.1 Pattern Search for Continuous Variables

Upon its introduction and convergence analysis, Torczon [143] demonstrated that a

generalized class of pattern search methods unifies various distinct pattern search tech-

niques; namely, the Hooke-Jeeves method, coordinate search with fixed step lengths, EVOP

with factorial designs [33], and multidirectional search of Dennis and Torczon [38]. Torc-

zon’s paper was significant in that it established a global convergence theory without ever

computing or explicitly approximating derivatives.

Pattern search algorithms are defined through a finite set of directions used at each

iteration. The direction set and a step length parameter are used to construct a conceptual

mesh centered about the current iterate (the incumbent). Trial points are selected from this

discrete mesh, evaluated, and compared to the incumbent in order to select the next iterate.

If an improvement is found among the trial points, the iteration is declared successful and

36

the mesh is retained or coarsened; otherwise, the mesh is refined and a new set of trial

points is constructed. Torczon proved that, for a continuously differentiable function f , a

subsequence of the iterates {xk} produced by the generalized class of methods converges

to a stationary point of f (i.e., lim infk→∞ ||∇f(xk)|| = 0) by showing that the mesh size

(step length) parameter becomes arbitrarily small.

The mesh is defined by a finite set of directions that must be sufficiently rich to ensure

that a component of the steepest descent direction can be captured by at least one element

of the set when the current iterate is not a stationary point. Lewis and Torczon [79]

applied the theory of positive linear dependence [37] to establish criteria for a core set of

directions. The core direction set must be drawn from a set that positively spans the space

Rn, where a positive spanning set of directions is defined as one in which nonnegative linear

combinations of all directions span Rn. Typically this set forms a positive basis, which is the

smallest proper subset of a positive spanning set that still positively spans Rn. A positive

basis contains between n+ 1 (a minimal set) and 2n (a maximal set) elements; therefore,

the worst case number of trial points per iteration can be bounded to n+ 1 points by an

appropriately constructed direction set.

Lewis and Torczon extend the results of [143] and [79] to problems with bound con-

straints [80] and linear constraints [81]. In these situations, the set of search directions

must be sufficiently rich to ensure that some of the positive spanning directions conform to

the geometry of the constraint boundaries. With this construct, when the current iterate

is not a constrained stationary point, there is at least one feasible direction of descent from

which to choose.

Audet and Dennis [14] present an alternative but equivalent version of pattern search

and attendant convergence theory for bound and linear constrained problems. In their

37

analysis, various convergence results are reported that relate the optimality conditions

to smoothness properties of the objective function and to the defining directions of the

algorithm. It should be noted that Audet and Dennis explicitly separate the search for

an improved iterate into a and a step. The optional step employs

a user-defined strategy to seek an improved mesh point. This step contributes nothing to

the convergence theory, but allows the user great flexibility to apply any desired heuristic

to speed convergence. For example, approaches may include randomly selecting a space-

filling set of points using Latin hypercube design or orthogonal arrays, or applying a few

iterations of a genetic algorithm. For computationally expensive functions, one common

approach is to use previously sampled responses to construct and optimize a less expensive

surrogate function on the mesh using the methods of Section 2.1.5. Such methods have

been implemented within a pattern search framework without sacrifice to the convergence

theory [30—32,39, 86,127,145, 147].

Audet and Dennis [16] extend their approach to nonlinear constraints by implement-

ing a filter method [45], which accepts new iterates if either the objective function or an

aggregate constraint violation function is reduced. In an alternative approach to nonlinear

constraint handling, Lewis and Torczon [82] use an augmented Lagrangian function from

Conn, Gould, and Toint [36] to construct a bound constrained subproblem that is solved

approximately using a pattern search. Finally, Audet and Dennis [15] recently developed

an extension to GPS, known as Mesh Adaptive Direct Search (MADS), that replaces the

filter method with a barrier method that assigns a value of +∞ to infeasible iterates with-

out evaluating their objective function. The key to MADS is to conduct the step

using a dense set of directions that enable the resulting algorithms to retain convergence

properties under weak constraint qualifications at the limit point.

38

2.2.2 Pattern Search for Mixed Variables

A pattern search framework for MVP problems with bound and linear constraints was

developed by Audet and Dennis [13] by incorporating user-defined discrete neighborhoods

into the definition of the mesh. The methodology was further generalized in [1] and [2] to

include nonlinear constraints. In the mixed variable case, the step is conducted by

searching a subset of the mesh with respect to the continuous variables and searching a

user-defined discrete neighbor set. If the step does not yield an improved solution, an

step is initiated in the continuous neighborhood of any discrete neighbor

with an objective function value sufficiently close (i.e. within a tolerance ξ) to that of the

incumbent. This aspect of the algorithm allows extension of the convergence theory to the

mixed variable domain but incurs a cost of more function evaluations.

2.2.3 Pattern Search for Random Response Functions

Pattern search applied to stochastic optimization problems is rare. Ouali et al. [104]

applied multiple repetitions of generalized pattern search directly to a stochastic simulation

model to seek minimum cost maintenance policies where costs were estimated by the model.

In a more rigorous approach, Trosset [146] analyzed convergence in the unconstrained,

continuous case by viewing the iterates as a sequence of binary ordering decisions. By

defining Λk = f(Xk)−f(Y), where Y is a trial point from the mesh, the following hypothesis

test,

H0 : Λk ≤ 0 versus H1 : Λk > 0 (2.9)

accepts Y as the new iterate if the null hypothesis is rejected. Such a test is subject to Type

I and Type II errors. A Type I error is made if H0 is rejected when it is actually true and

occurs with probability α; a Type II error is made if H0 is accepted when H1 is true and

occurs with probability β. A selection of a sequence of significance levels {αk} such that

39

∞

k=1

αk <∞ ensures (with probability one) a finite number of Type I errors. In addition, let

{λk} be a sequence of alternatives satisfying λk > 0, λk = o(∆k), and λk → 0 that require

power 1 − βk when conducting the test in (2.9). Choosing a sequence {βk} such that
∞

k=1

βk <∞ ensures a finite number of Type II errors when Λk ≥ λk. Hence, Trosset claims

that a sequence of iterates from a GPS algorithm can be shown to converge almost surely

to a stationary point of f but, in practice, would require a very large number of samples

to guarantee convergence [146]. He uses a power analysis, a statistical technique designed

to determine the number of samples required to guarantee a probability 1− β (known as

the power of the test) of rejecting H0 when H1 is true, to show that the number of samples

per iteration grows faster than the squared reciprocal of the mesh size parameter.

2.3 Summary

Section 2.1 reviewed the various approaches to sampling-based stochastic optimization.

Each class of methods was discussed with regard to the important properties of convergence

and generality. The review illustrates the need for rigorous algorithms that can treat the

target class of problems (1.2). The GPS class of algorithms, reviewed in Section 2.2,

possesses desirable convergence properties for deterministic problems. Due to its reliance

on only response samples (i.e., no derivatives) and as its applicability over mixed variable

domains, GPS also possesses desirable generality properties. Extension of pattern search

theory to the stochastic setting has only recently been introduced [104, 146], yet has not

been thoroughly studied to yield new theoretical or empirical results. In a novel approach

that combines pattern search with ranking and selection, the remaining chapters provide

results of both a theoretical and empirical nature.

40

Chapter 3 - Algorithmic Framework and Convergence

Theory

This chapter presents the algorithmic framework and convergence theory for mixed

variable stochastic optimization with bound and linear constraints on the continuous vari-

ables using a combined generalized pattern search with ranking and selection approach.

Section 3.1 provides some basic definitions for mixed variable domains. Section 3.2 presents

the mathematical framework for construction of the mesh from which candidate solutions

are drawn. Section 3.3 addresses the handling of bound and linear constraints within this

framework. Section 3.4 summarizes the traditional mixed-variable GPS approach used for

deterministic optimization. Section 3.5 discusses the alternative approach to iterate selec-

tion in the presence of random responses by selecting from among a number of candidates

using R&S. Section 3.6 presents and describes the new class of algorithms, and Section

3.7 provides a theoretical convergence analysis that proves almost sure convergence to an

appropriately defined first-order stationary point. Finally, Section 3.8 illustrates a basic

version of the algorithm on a simple example.

3.1 Mixed Variables

In order to devise algorithms for the target class of problems, it is important to have

notions of local optimality and stationarity for mixed variable domains. Local optimality in

a continuous domain is well established, and even for discrete variables, it is not difficult to

define. However, since categorical variables typically have no inherent ordering, the concept

of a local neighborhood must be defined in the context of the problem. For example, in

Kokkolaras et al. [74] the optimization problem was to determine the optimal number and

types of insulators in a thermal insulation system. Given a design, a discrete neighbor was

41

defined to be any design in which an insulator was replaced with one of a different material,

or one in which the number of insulators was increased or decreased by one.

To generalize this for MVP problems, the set of discrete neighbors is defined by a set-

valued function N : Θ→ 2Θ, where 2Θ denotes the power set of Θ. The notation y ∈ N (x)

means that the point y is a discrete neighbor of x. By convention, x ∈ N (x) for each x ∈ Θ,

and it is assumed that N (x) is finite.

Local optimality in a mixed variable domain can be defined in terms of the set of

discrete neighbors. The following definition is due to Audet and Dennis [13].

Definition 3.1 (Local Minimizer) A point x = (xc, xd) ∈ Θ is a local minimizer of f with
respect to the set of neighbors N (x) ⊂ Θ if there exists an > 0 such that f(x) ≤ f(v) for
all

v ∈ Θ ∩
y∈N (x)

(B(yc,)× yd). (3.1)

This definition is stronger than simply requiring optimality with respect to the contin-

uous variables and also with respect to discrete neighbors. It requires the local minimizer

to have lower function value than any point in a neighborhood of each discrete neighbor.

Furthermore, the quality of the local minimizer is impacted by the user-defined discrete

neighborhood. A larger set of discrete neighbors results in a more global local minimizer,

but algorithms that require function evaluations at each discrete neighbor will do so at

a greater cost. Since optimization algorithms are rarely guaranteed to converge to local

optimizers in general, convergence to a point satisfying certain first-order stationarity con-

ditions is a good substitute. The following definition, which is similar in form to that of

[84] for unconstrained problems, is implied but not formally stated in [13] and [1]. The

notation ∇cf represents the gradient of f with respect to the continuous variables while

holding the discrete variables constant.

Definition 3.2 (First-order necessary conditions in mixed-variable domain) A point x ∈ Θ
satisfies first-order necessary conditions for optimality if

42

1. (wc − xc)T∇cf(x) ≥ 0 for any feasible (wc, xd) ∈ Θ;
2. f(x) ≤ f(y) for any discrete neighbor y ∈ N (x) ⊂ Θ;
3. (wc − yc)T∇cf(y) ≥ 0 for any discrete neighbor y ∈ N (x) satisfying f(y) = f(x) and
for any feasible (wc, yd) ∈ Θ.

The converge analysis of Section 3.7 shows that, under reasonable assumptions, certain

subsequences generated by the class of algorithms introduced in this chapter converge with

probability one (almost surely) to limit points satisfying Conditions 1—3 of Definition 3.2.

However, the notions of convergence and continuity in a mixed variable domain are first

required. The following two definitions appear in [1], with the first also similar to one in

[85].

Definition 3.3 (Convergence, limit point) Let Θ ⊆ (Rnc × Znd) be a mixed variable
domain. A sequence {xi} ∈ Θ is said to converge to x ∈ Θ if, for every > 0, there exists
a positive integer N such that xdi = x

d and xci − xc < for all i > N . The point x is said

to be the limit point of the sequence {xi}.

Definition 3.4 (Neighbor Set Continuity) A set-valued functionN : Θ ⊆ (Rnc×Znd)→ 2Θ

is continuous at x ∈ Θ if, for every > 0, there exists ς > 0 such that, whenever u ∈ Θ
satisfies ud = xd and uc − xc < ς, the following two conditions hold:

1. If y ∈ N (x), there exists v ∈ N (u) satisfying vd = yd and vc − yc < .

2. If v ∈ N (u), there exists y ∈ N (x) satisfying yd = vd and yc − vc < .

Thus, given a convergent subsequence of iterates and a convergent subsequence of its

discrete neighbors, continuous N means that the limit points of the discrete neighbor points

are themselves discrete neighbors of the limit point of the iterates [1].

3.2 Positive Spanning Sets and Mesh Construction

Pattern search algorithms produce a sequence of iterates that are selected from a

discrete mesh in the search domain. Construction of the mesh relies on the following

definitions, due to Davis [37]:

43

Definition 3.5 (Positive combination) A positive combination of the set of vectors V =

{vi}ri=1 is a linear combination
r

i=1
civi, where ci ≥ 0, i = 1, 2, . . . , r.

Definition 3.6 (Positive spanning set, positively span) A finite set of vectorsW = {wi}ri=1
forms a positive spanning set for Rn if every v ∈ Rn can be expressed as a positive combi-
nation of vectors in W . The set of vectors W is said to positively span Rn.

Definition 3.7 (Positive basis) A positive spanning set of vectorsW is said to be a positive

basis for Rn if no proper subset of W positively spans Rn.

The motivation for using positive spanning sets in GPS algorithms is encompassed in

the following theorem, due to Davis [37].

Theorem 3.8 (Davis [37]). A set D positively spans Rn if and only if, for all nonzero
v ∈ Rn, vTd > 0 for some d ∈ D.

If the gradient vector ∇f(x) exists at x and is nonzero, then, by choosing v = −∇f(x),

there exists a d ∈ D such that ∇f(x)Td < 0. Thus, at least one element of D is a descent

direction which ensures that GPS algorithms can always find improving points when the

gradient is nonzero.

In the original paper on pattern search for continuous variables, Torczon [143] defined

the mesh as follows:

Mk(xk) = {xk +∆kd : d ∈ Γk}, (3.2)

where ∆k is the mesh size parameter at iteration k and d ∈ Γk means that d is a column

of the direction matrix Γk. The matrix Γk may be decomposed into two matrices,

Γk = Dk Lk , (3.3)

where Dk ∈ Rn×p, p = 2n, is a core set of directions and Lk ∈ Rn×q, q ≥ 1, contains at

least the column of zeroes and any additional columns of directions that allow algorithm

44

refinements. Lewis and Torczon [79] redefined the requirements for Dk, restricting p to the

range n+ 1 ≤ p ≤ 2n and ensuring that Dk forms a positive basis according to Definition

3.7. Before the mesh size parameter is reduced, each mesh point defined by the core set of

directions, i.e. {xk +∆kd : d ∈ Dk}, must be tried and declared unsuccessful.

Audet and Dennis [13] provide an alternative but equivalent definition for continuous

variables using the following mesh construct,

Mk(xk) = {xk +∆kDz : z ∈ Z|D|+ }, (3.4)

where Z|D|+ represents a |D|-dimensional vector of positive integers. The directions in D

form a positive spanning set according to Definition 3.6 and must satisfy the restriction,

D = GZ, (3.5)

where G ∈ Rn×n is a nonsingular generating matrix and Z ∈ Zn×|D|. One or more points

from (3.4) may be tried for improvement during an optional step of their algorithm.

If the step does not discover an improved solution, the step is invoked in which points

from a poll set defined as,

Pk(xk) = {xk +∆kd : d ∈ Dk ⊆ D}, (3.6)

are tested until an improved solution is found or the set is exhausted. Note that Dk is also

a positive spanning set and Pk, the set of neighboring mesh points, is a subset of Mk.

For MVP problems the mesh is defined differently, but in a way that reduces to the

basic mesh structure of (3.4) if there are no discrete variables. A set of positive spanning

directions Di is constructed for each unique combination i = 1, 2, . . . , imax, of values that

the discrete variables may take, i.e.,

Di = GiZi, (3.7)

45

where Gi ∈ Rnc×nc is a nonsingular generating matrix and Zi ∈ Znc×|Di|. The mild restric-

tions imposed by (3.5) and (3.7) are necessary for the convergence theory. The mesh is then

formed as the direct product of Θd with the union of a finite number of meshes in Θc, i.e.,

Mk(xk) = Θ
d ×

imax

i=1

xck +∆kD
iz ∈ Θc : z ∈ Z|Di|

+ . (3.8)

At iteration k, let Dik ⊆ Di denote the set of poll directions corresponding to the ith

set of discrete variable values and define Dk = ∪imaxi=1D
i
k. The poll set is defined with respect

to the continuous variables centered at the incumbent while holding the discrete variables

constant. Its form is

Pk(xk) = xk +∆k(d, 0) ∈ Θ : d ∈ Dik (3.9)

for some 1 ≤ i ≤ imax, where (d, 0) denotes the partitioning into continuous and discrete

variables; 0 means the discrete variables remain unchanged, i.e., xk + ∆k(d, 0) = (xck +

∆kd, x
d
k).

3.3 Bound and Linear Constraint Handling

An appropriate means to search regions near the constraint boundaries is necessary to

find stationary points that reside there. In this situation, the direction set is required to be

sufficiently rich so that the polling directions of the GPS algorithm can be chosen to conform

to the geometry of the constraint boundaries. In [80] and [81], Lewis and Torczon show how

this can be done for every point in Θ via the inclusion of generators for the tangent cone to

the feasible region as a subset of directions in the direction set. The concepts of a tangent

vector and tangent cone are formalized in the following definition, taken from [100, p. 587].

Definition 3.9 (Tangent, tangent cone) A vector w ∈ Rn is tangent to Θ at x ∈ Θ if, for
all vector sequences {xi} with xi → x and xi ∈ Θ, and all positive scalar sequences ti ↓ 0,
there is a sequence wi → w such that xi + tiwi ∈ Θ for all i. The tangent cone at x is the
collection of all tangent vectors to Θ at x.

46

If the current iterate is within ε > 0 of a constraint boundary, the tangent cone

K◦(x, ε) may be generated as the polar of the cone K(x, ε) of outward pointing normals

for the constraints within ε of xk. This is illustrated for two dimensions in Figure 3.1.

Inclusion of the tangent cone generators in the set of directions used by pattern search

is sufficient to ensure convergence. An algorithm for computing these directions in the

absence of degeneracy is given in [81]. It should be noted that, since the target class of

problems is restricted to a finite number of linear constraints, there are only a finite number

of tangent cone generators for the entire feasible region, which prevents violation of the

finiteness of the direction sets, Di, i = 1, 2, . . . , imax. However, this would not hold in the

presence of nonlinear constraints, which are not treated in this research.

ε
x

Θc

K◦(x,ε)

K(x,ε)

Figure 3.1. Directions that conform to the boundary of Θc (from [81])

To simplify the convergence analysis in Section 3.7 and avoid reintroducing the method

of Lewis and Torczon [81], the following more general definition from [14] is provided. The

construction and inclusion of tangent cone generators will be assumed.

Definition 3.10 (Conforming directions) Let D be a positive spanning set in Rn. A rule

for selecting the positive spanning sets Dk = D(k, xk) ⊆ D conforms to Θc for some ε > 0,
if, at each iteration k and for each y in the boundary of Θc for which y − xk < ε, the

tangent cone K◦(x, ε) is generated by nonnegative linear combinations of a subset of the
columns of Dk.

47

With conforming directions included, linear constraints can be treated with the simple

barrier approach. That is, if a linear constraint is violated at a trial point, then a function

value of +∞ is assigned without computing the objective function value there, thus saving

computational expense.

3.4 The MGPS Algorithm for Deterministic Optimization

Within the GPS framework, mixed variables are accommodated via a user-defined set

of discrete neighbors N introduced in Section 3.1 at each point in the domain. Elements

in the neighbor set include the current point and for the remaining elements involve, at

a minimum, changes to the values of the discrete variables. For example, if the discrete

variables are integers, a neighborhood structure may be defined by holding the continuous

variables constant and allowing a maximum change of one unit for only one of the discrete

variables, i.e., N (xk) = {yc = xck, yd ∈ Θd : yd − xdk 1
≤ 1}. This may not be appropriate

if the discrete variables are all categorical since the ordering implied by integer values no

longer applies; changing a categorical variable value from “1” to “3” may be as valid as a

change from “1” to “2”. Note that discrete neighbors may require accompanying changes to

the continuous variables in order for the solution to make sense for the particular problem.

The basic mixed-variable GPS (MGPS) algorithm for deterministic optimization [13]

conducts three distinct searches embodied in the , , and

steps. At iteration k, the optional step evaluates points from a subset of the mesh,

Sk ⊂Mk(xk) while the step evaluates points from the set Pk(xk) and the set of discrete

neighbors N (xk). Extended polling is conducted after an unsuccessful and

step for any point y ∈ N (xk) in the discrete neighbor set of the incumbent that satisfies

f(y) < f(xk) + ξk. The term ξk is the extended poll trigger at iteration k and must satisfy

ξk ≥ ξ > 0 for some positive scalar ξ. The extended poll set of points evaluated about a

48

particular discrete neighbor yk is denoted as E(yk) = Pk(y
j
k)

Jk

j=1
. Therefore, a poll set

with respect to continuous variables is constructed about yk and the resulting finite number

of extended poll points, indexed by a j superscript, are evaluated until an improvement is

found over f(xk) or no further improvement can be made in the continuous variable space

near yk. In either case, let Jk denote the total number of extended poll points considered

in the step for discrete neighbor yk. The point zk = yJkk is termed the

extended poll endpoint . The set of all extended poll points considered by the

step at iteration k is defined as

Xk(Ek) =
y∈N ξ

k

E(yk) (3.10)

where N ξ
k = {y ∈ N (xk) : f(xk) ≤ f(y) ≤ f(xk) + ξk}.

A mixed-variable GPS (MGPS) algorithm for deterministic optimization, due to Audet

and Dennis [13], is shown in Figure 3.2. With deterministic function evaluations, the

algorithm evaluates trial points from Sk∪Pk(xk)∪N (xk)∪Xk(Ek) in search of an improved

mesh point. If an improved point is found in any step, the mesh is coarsened or retained;

otherwise, if an improved point is not found from the set Pk(xk) ∪ N (xk) ∪ Xk(Ek), the

mesh is refined.

The update rules for ∆k in the algorithm have important implications for the con-

vergence analysis. The mesh is updated (refined, coarsened, or retained) according to the

rules found in [1, p. 46]. Refinement must satisfy

∆k+1 = τm
−
k∆k (3.11)

where τ > 1 is rational and fixed over all iterations, 0 < τm
−
k < 1, and m−k is an integer

satisfying mmin ≤ m−k ≤ −1 for some fixed integer mmin ≤ −1.

49

Mixed-Variable Generalized Pattern Search (MGPS) Algorithm

Initialization: Choose a feasible starting point x0 ∈ Θ. Set ∆0 > 0 and ξ > 0.

Set the iteration counter k to 0. For k = 0, 1, 2, . . ., perform the following

1. Set extended poll trigger ξk ≥ ξ.

2. S step (optional): Employ a finite strategy seeking an improved mesh point; i.e., xk+1 ∈
Mk(xk) such that f(xk+1) < f(xk).

3. P step: If the step did not find an improved mesh point, evaluate f at points in

Pk(xk) ∪N (xk) until either an improved mesh point xk+1 is found or until the set Pk(xk) ∪N (xk)
is exhausted.

4. E P step: If and did not find improved mesh point, evaluate f at

points in Xk(ξk) until either an improved mesh point xk+1 is found or Xk(ξk) is exhausted.

5. Parameter update: If , , or finds an improved mesh point, update

xk+1 and set ∆k+1 ≥ ∆k; otherwise, set xk+1 = xk and ∆k+1 < ∆k.
Figure 3.2. MGPS Algorithm for Deterministic Optimization (adapted from [1])

Coarsening after a successful , , or step is accomplished

by

∆k+1 = τm
+
k∆k (3.12)

where τ > 1 is defined as above and m+k is an integer satisfying 0 ≤ m+k ≤ mmax for some

fixed integer mmax ≥ 0.

From these rules, it follows that the mesh size parameter at iteration k may be ex-

pressed in terms of the initial mesh size parameter value, i.e.,

∆k = τ bk∆0 (3.13)

for some bk ∈ Z, which provides for an orderly algebraic structure of the iterates important

to proving convergence without imposing a sufficient decrease requirement [143].

50

3.5 Iterate Selection for Noisy Response Functions

For problems with noisy response functions, single-sample response comparisons of

the type used in the algorithm of Figure 3.2 can potentially lead to erroneous decisions

due to variation in the response. Alternative techniques for comparing trial points are

necessary to ensure that the iterate selection decision accounts for variation and provides

some statistical assurances of correct decisions. In the approach of Trosset [146], iterate

selection via hypothesis testing is suggested in which a binary selection decision between the

incumbent and candidate design is based on sufficient statistical evidence. This approach

is generalized in this research by using R&S so that multiple candidates may be considered

simultaneously at reasonable computational cost associated with the requisite sampling.

This approach provides the following advantages:

• It is amenable to parallelization techniques since several trial solutions can
be considered simultaneously in the selection process rather than only two

(incumbent and candidate).

• R&S procedures detect the relative order, rather than generate precise estimates,
of the candidate solutions. This is generally easier to do [48] and provides

computational advantages.

• Selection error is limited to Type II error only, i.e., making an incorrect selection
of the best candidate; Type I error is eliminated based on the assumption of a

best system among the candidates.

• The use of an indifference zone parameter (defined in Section 2.1.3) can be easily
and efficiently adapted for algorithm termination.

The mechanics of a general indifference-zone R&S procedures are developed in this

section so that this construct may be incorporated into the generalized pattern search algo-

rithm (Section 3.6). At iteration k of the algorithm, consider a finite set C = {Y1, Y2, . . . , YnC}

⊂ Mk of candidate solutions, including the incumbent, such that nC ≥ 2. For each

q = 1, 2, . . . , nC , let fq = f(Yq) = E[F (Yq, ·)] denote the true mean of the response func-

tion F . As in Section 2.1.3, the collection of these means can be ordered from minimum to

51

maximum as

f[1] ≤ f[2] ≤ · · · ≤ f[nC]. (3.14)

Again, the notation Y[q] ∈ C indicates the candidate from C with the qth best (lowest) true

objective function value and the probability of correct selection is defined as

P{CS} = P select Y[1] | f[q] − f[1] ≥ δ, q = 2, . . . , nC ≥ 1− α, (3.15)

where δ and α become parameters in the algorithm.

Of course, true objective function values are not available in the current problem

setting, so it is necessary to work with sample means of the response F . For each q =

1, 2, . . . , nC , let sq be the total number of replications and let {Fqs}sqs=1 be the set of responses

obtained via simulation, where Fqs = F (Yqs), s = 1, . . . , sq. Then for each q = 1, 2, . . . , nC ,

the sample mean F̄q is computed as

F̄q =
1

sq

sq

s=1

Fqs. (3.16)

These sample means may be ordered and indexed the same way as in (3.14). The notation

Ŷ[q] ∈ C is used to denote the candidate with the qth best (lowest) estimated objective

function value as determined by the R&S procedure. The candidate corresponding to the

minimum mean response, Ŷ[1] = arg(F̄[1]), is selected as the new iterate.

To retain generality of the algorithm class of Section 3.6, Procedure RS(C,α, δ) is

defined in Figure 3.3 as a generic R&S procedure that takes as input a candidate set

C ⊂ Mk, significance level α, and indifference zone parameter δ, and returns candidate

Ŷ[1] = arg(F̄[1]) as the best. The technique used in Step 1 to determine the number of

samples for each candidate is dependent on the specific procedure. Three specific techniques

52

Procedure RS(C, α, δ)

Inputs: A set C = {Y1, Y2, . . . , YnC} of candidate solutions, significance level α, and indifference
zone parameter δ.

Step 1 : For each candidate Yq, use an appropriate technique to determine the number of samples

sq required to meet the probability of correct selection guarantee, as a function of α, δ and response

variation of Yq.

Step 2 : Obtain sampled responses Fqs, q = 1, . . . , nC and s = 1, . . . , sq. Calculate the sample means
F̄q based on the sq replications according to (3.16). Select the candidate associated with the smallest

estimated sample mean, i.e., Ŷ[1] = arg F̄[1] as having the δ-near-best mean.

Return: Ŷ[1]

Figure 3.3. A Generic R&S Procedure

were implemented for the computational evaluation and are described in detail in Section

4.1.

3.6 The MGPS-RS Algorithm for Stochastic Optimization

For stochastic response functions, procedures of the type introduced in Section 3.5

are used within the generalized pattern search framework to select new iterates. This

framework is flexible in that a number of specific R&S procedures may be used, so long as

they satisfy the probability of correct selection guarantee (3.15).

A mixed variable GPS ranking and selection (MGPS-RS) algorithm is presented in

Figure 3.4 for mixed variable stochastic optimization problems with bound and linear con-

straints on the continuous variables. In the algorithm, binary comparisons of incumbent

and trial designs used in traditional GPS methods are replaced by R&S procedures in

which one candidate is selected from a finite set of candidates considered simultaneously.

The R&S procedures provide error control by ensuring sufficient sampling of the candidates

so that the best or δ-near-best is chosen with probability 1− α or greater.

The mesh construct of (3.8) defines the set of points in the search domain Θ from

which the candidates are drawn. In the step, the flexibility of GPS allows any

53

Mixed Variable Generalized Pattern Search - Ranking & Selection (MGPS-RS)
Algorithm

Initialization: Set the iteration counter k to 0. Set the R&S counter r to 0. Choose a feasible

starting point, X0 ∈ Θ. Set ∆0 > 0, ξ > 0, α0 ∈ (0, 1), and δ0 > 0.

1. S step (optional): Employ a finite strategy to select a subset of candidate

solutions, Sk ⊂Mk(Xk) defined in (3.8) for evaluation. Use Procedure RS(Sk ∪ {Xk},
αr, δr) to return the estimated best solution Ŷ[1] ∈ Sk ∪ {Xk}. Update αr+1 < αr,

δr+1 < δr, and r = r+1. If Ŷ[1] = Xk, the step is successful, update Xk+1 = Ŷ[1], ∆k+1
≥ ∆k according to (3.12), and k = k + 1 and repeat Step 1. Otherwise, proceed to
Step 2.

2. P step: Set extended poll trigger ξk ≥ ξ. Use Procedure RS(Pk(Xk) ∪ N (Xk),
αr, δr) where Pk(Xk) is defined in (3.9) to return the estimated best solution Ŷ[1] ∈
Pk(Xk) ∪N (Xk). Update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ[1] = Xk, the step

is successful, update Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (3.12), and k = k + 1 and
return to Step 1. Otherwise, proceed to Step 3.

3. E step: For each discrete neighbor Y ∈ N (Xk) that satisfies the
extended poll trigger condition F̄ (Y) < F̄ (Xk) + ξk, set j = 1 and Y

j
k = Y and do the

following.

a. Use Procedure RS(Pk(Y
j
k), αr, δr) to return the estimated best solution Ŷ[1] ∈

Pk(Y
j
k). Update αr+1 < αr, δr+1 < δr, and r = r+1. If Ŷ[1] = Y

j
k , set Y

j+1
k = Ŷ[1]

and j = j + 1 and repeat Step 3a. Otherwise, set Zk = Y
j
k and proceed to Step

3b.

b. Use Procedure RS(Xk ∪ Zk) to return the estimated best solution Ŷ[1] = Xk or

Ŷ[1] = Zk. Update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ[1] = Zk, the step

is successful, update Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (3.12), and k = k + 1
and return to Step 1. Otherwise, repeat Step 3 for another discrete neighbor that

satisfies the extended poll trigger condition. If no such discrete neighbors remain,

set Xk+1 = Xk, ∆k+1 < ∆k according to (3.11), and k = k+1 and return to Step
1.

Figure 3.4. MGPS-RS Algorithm for Stochastic Optimization

user-defined procedure to be used in determining which candidates from (3.8) to consider.

In the step, the entire poll set about the incumbent (3.9) and the discrete neighbor set

are considered simultaneously. If and are unsuccessful, the

step conducts a polling sequence that searches the continuous neighborhood of any discrete

neighbor with a response mean sufficiently close to the response mean of the incumbent.

54

This step is divided into sub-steps to account for the sequence of R&S procedures that

may be necessary. In Step 3a, each sub-iterate Y
j
k , indexed by sub-iteration counter j and

iteration k, is selected as the best candidate from the poll set centered about the previous

sub-iterate using the R&S procedure, terminating when the procedure fails to produce

a sub-iterate different from its predecessor. The terminal point of the resulting sequence

{Y jk }Jkj=1, denoted as Zk = Y Jkk and termed an extended poll endpoint, is compared to the

incumbent via a separate R&S procedure in Step 3b.

If the extended poll trigger ξk is set too high, more extended poll steps result, thus

making a solution more “global”. However, the additional sampling required at the extra

points increases computational expense, particularly with high noise levels in the response

output.

The algorithm maintains a separate counter for R&S parameters αr and δr to provide

strict enforcement of the rules on these parameters that are updated after each execution

of the R&S procedure. The rules ensure that each parameter tends to zero as the number

of iterations approaches infinity. An additional restriction on αr is that the infinite series

∞
r=1 αr converges; that is,

∞
r=1 αr < ∞. These restrictions are critical for convergence

and are justified in Section 3.7.

The update rules for ∆k in the algorithm are the same as the deterministic case.

Refinement (3.11) is accomplished after (if used), , and are

all unsuccessful. Coarsening (3.12) is accomplished after any successful , , or

step.

Each execution of the R&S procedure generates an iterate or sub-iterate that is the

candidate returned as the best by the procedure. When the new iterate (sub-iterate) is

different from (presumed better than) the incumbent, the iteration (sub-iteration) is termed

55

successful ; if it remains the same, it is unsuccessful . The use of these terms is in keeping with

traditional pattern search methods where, in a deterministic setting, a success indicates a

strict improvement in the objective function value. Let Vr+1 denote an iterate or sub-iterate

selected from candidate set C of cardinality nC by the rth R&S procedure of the MGPS-

RS algorithm. Each successful and unsuccessful outcome (iteration or sub-iteration) can

then be further divided into three cases. These cases follow:

1. The outcome is considered successful if one of the following holds:

a. indifference zone condition is met and R&S correctly selects a new incumbent,

i.e.,

Vr = Vr+1 = Y[1], f(Y[q])− f(Y[1]) ≥ δr, q = 2, 3, . . . , nC ; (3.17)

b. indifference zone condition is met but R&S incorrectly selects a new incumbent,

i.e.,

Vr = Vr+1 = Y[1], f(Y[q])− f(Y[1]) ≥ δr, q = 2, 3, . . . , nC ; (3.18)

c. indifference zone condition is not met and R&S selects a new incumbent, i.e.,

Vr = Vr+1, f(Y[q])− f(Y[1]) < δr for some q ∈ {2, 3, . . . , nC} . (3.19)

2. The outcome is unsuccessful if one of the following holds:

a. indifference zone condition is met and R&S correctly selects the incumbent, i.e.,

Vr = Vr+1 = Y[1], f(Y[q])− f(Y[1]) ≥ δr, q = 2, 3, . . . , nC ; (3.20)

b. indifference zone condition is met but R&S incorrectly selects the incumbent, i.e.,

Vr = Vr+1 = Y[1], f(Y[q])− f(Y[1]) ≥ δr, q = 2, 3, . . . , nC ; (3.21)

c. indifference zone condition not met and R&S selects the incumbent, i.e.,

Vr+1 = Vr, f(Y[q])− f(Y[1]) < δr for some q ∈ {2, 3, . . . , nC} . (3.22)

In the algorithm, Xk and Y
j
k play the role of Vr for iterates and sub-iterates, respec-

tively. Of the possible outcomes for new iterates or sub-iterates, conditions (3.17) and (3.20)

conform to the traditional GPS methods for deterministic optimization where, in the case

of a successful iteration, a trial point on the mesh has a better true objective function value

than the incumbent and, in the case of an unsuccessful iteration, the incumbent has the

56

best true objective function value of all candidates considered. Of particular concern for

the convergence analysis are the remaining conditions.

Conditions (3.19) and (3.22) occur when the difference between true objective function

values of a trial point on the mesh and the incumbent is smaller than the indifference zone

parameter. This situation can result from either an overly relaxed indifference zone or a

flat surface of the true objective function in the region of the search. When this occurs,

the probability for correct selection cannot be guaranteed. However, forcing convergence of

δr to zero via update rules ensures that the indifference zone condition will be met in the

limit. Of greater concern is the case when the indifference zone condition is met, but the

algorithm selects the wrong candidate (i.e., it doesn’t choose the candidate with the best

true objective function value). This represents conditions (3.18) and (3.21), and occurs

with probability αr or less for the rth R&S procedure. The convergence analysis of the

following section addresses controls placed on the errors presented by these conditions.

3.7 Convergence Analysis

In this section, a convergence analysis for the MGPS-RS algorithm is given. The

following assumptions are required for the analysis:

A1: All iterates Xk produced by the MGPS-RS algorithm lie in a compact set.

A2: The objective function f is continuously differentiable with respect to the continuous

variables when the discrete variables are fixed.

A3: For each set of discrete variables Xd, the corresponding set of directions Di = GiZi,

as defined in (3.7), includes tangent cone generators for every point in Θc.

A4: The rule for selecting directions Dik conforms to Θ
c for some ε > 0 (see Definition

3.10).

57

A5: For each q = 1, 2, . . . , nC , the responses {Fqs}sqs=1 are independent, identically and

normally distributed random variables with mean f(Xq) and unknown variance σ
2
q < ∞,

where σ2 = σ2q whenever = q.

A6: The sequence of significance levels {αr} satisfies ∞
r=0 αr < ∞, and the sequence of

indifference zone parameters {δr} satisfies limr→∞ δr = 0.

A7: For the rth R&S procedure considering candidate set C = {Y1, Y2, . . . , YnC}, Procedure

RS(C, αr, δr) guarantees correctly selecting the best candidate Y[1] ∈ C with probability

of at least 1− αr whenever f(Y[q])− f(Y[1]) ≥ δr for any q ∈ {2, 3, . . . , nC}.

A8: For all but a finite number of MGPS-RS iterations and sub-iterations, the best so-

lution Y[1] ∈ C is unique; i.e., f(Y[1]) = f(Y[q]) for all q ∈ {2, 3, . . . , nC} where C =

{Y1, Y2, . . . , YnC} ⊂M(Xk) at iteration k.

These assumptions warrant a brief discussion. Assumption A1 is a fairly standard

assumption, and is easily enforced by including finite upper and lower bounds on the con-

tinuous variables, which is very common in practice. Assumption A3 ensures that the

restriction on the direction set (3.7) is maintained in the presence of linear constraints, and

assumption A4 provides for adequate rules to generate conforming directions. A sufficient

condition for assumption A3 to hold is that Gi = I for each i ∈ {1, . . . , imax} and the coef-

ficient matrix A is rational [1, p. 73]. The independent, normally distributed requirement

for responses from a single alternative in assumption A5 is common for R&S techniques

and is readily achieved in simulation via batched output data or sample averages of inde-

pendent replications [99]. Furthermore, unequal variances between different alternatives is

realistic for practical problems and is readily handled with modern R&S procedures. As-

sumption A6 is a requirement levied to enable the convergence proofs in this section. As-

sumptionA7 provides the correct selection guarantee of the R&S procedure and is required

58

in the absence of identifying a specific method. Most R&S procedures are accompanied by

proofs that the correct selection guarantee is met. MGPS-RS is flexible in that any R&S

procedure may be used, so long as it satisfies assumption A7. Finally, assumption A8 is

required to ensure that the indifference zone condition is eventually met during the course

of the iteration sequence. This assumption may seem restrictive, but the likelihood of two

candidate mesh points having exactly the same objective function value is quite rare for

non-academic problems.

Since MGPS-RS iterates are random variables, the convergence analysis must be car-

ried out in probabilistic terms. To that end, the following definition provides what is needed

for iterates in a mixed variable domain, and is consistent with Definition 3.3.

Definition 3.11 (Almost Sure Convergence, Limit Point) Let Θ ⊆ (Rnc×Znd) be a mixed
variable domain. A sequence of multivariate random vectors {Xk} converges almost surely
(a.s.) to the limit point x̂ ∈ Θ if, for every ε > 0, there exists a positive integer N such

that P (Xd
k = x

d) = 1 and P (Xc
k − xc < ε) = 1 for all k > N .

3.7.1 Controlling Incorrect Selections

Random variation in the responses leads to errors in the iterate selection decision in

the form of incorrect selections. The concept of an incorrectly selected MGPS-RS iterate

or sub-iterate was formalized by conditions (3.18) and (3.21). Let Ar denote the incorrect

selection event that “Vr+1 is incorrectly selected by the rth R&S procedure in the MGPS-

RS algorithm”. For convergence of the iteration sequence {Xk}, a means of bounding the

sequence of incorrect selection events {Ar} is necessary so that the sequence of iterates is not

dominated by incorrectly selected (and possibly unimproving) candidates. The restriction

on the sequence of significance levels in assumption A6, along with the first half of the

Borel-Cantelli lemma, provide this means.

59

Lemma 3.12 (Borel-Cantelli) Let {Br} be an infinite sequence of random events. If

∞

i=1

P (Br) <∞,

then

P (Br i.o.) = 0.

The term “i.o.” stands for infinitely often, so that the event [Br i.o.] can be interpreted

as the event “Br happens for infinitely many values of r”. Note that there is no requirement

for the events Br to be independent or identically distributed. A proof of this lemma can

be found in [113, p. 102].

Lemma 3.13 With probability 1, the subsequence of incorrectly selected iterates and sub-

iterates generated by algorithm MGPS-RS is finite.

Proof. Let Ar denote the occurrence of the event that the rth R&S procedure incorrectly

selects the next iterate or sub-iterate. The complement of assumption A7 yields P (Ar) ≤

αr, r = 1, 2, . . ., and assumption A6 ensures that
∞

r=1
P (Ar) ≤

∞

r=1
αr < ∞. The result

follows directly from Lemma 3.12.

The restriction on αr can be enforced in practice through an appropriately selected

update rule. For example, the update rule αr = α0ρ
r for 0 < ρ < 1 and α0 > 0 results in a

geometric series that converges, since ∞
r=1 αr =

α0
1−ρ <∞. Using this rule with α0 < 1, as

required by the R&S procedure, the rate at which αr converges to zero can be controlled

by the parameter ρ. Values for ρ closer to zero result in faster convergence than those that

are closer to one.

A final consideration involving incorrect selections is required to enable analysis of

the mesh size parameter. In particular, it is necessary to establish that MGPS-RS cannot

cycle indefinitely among iterates that belong to Θ. Such a condition occurs if and only if it

60

is possible to have infinitely many consecutive successful iterations. The following lemma

establishes the result.

Lemma 3.14With probability 1, the number of consecutive successful MGPS-RS iterations

must be finite.

Proof. Let KS represent the number of successful iterations of MGPS-RS after iteration k.

From conditions (3.17)—(3.19), KS = Kδ+KC+KI where Kδ is the number of successful it-

erates until the indifference zone condition is satisfied (3.17), KS is the number of correctly

selected successful iterates (3.18), and KI is the number of incorrectly selected successful

iterates (3.19). Assumptions A6 and A8 ensure that Kδ <∞. Furthermore, since assump-

tion A1 ensures that all iterates lie in a compact set, it must follow that KC <∞. Finally,

since the number of incorrectly selected successful iterates is a subset of all incorrect selec-

tions (successful and unsuccessful), Lemma 3.13 ensures that P (KI < ∞) = 1. It follows

that

P (KS <∞) = P (Kδ +KC +KI <∞) = P (KI <∞) = 1 .

3.7.2 Mesh Size Behavior

The main result of this section is that, with probability one, there exists a subsequence

of mesh size parameters that goes to zero, i.e. P (lim inf
k→+∞

∆k = 0) = 1, which is independent

of any smoothness assumptions on the objective function. This result was first established

by Torczon [143] and subsequently modified for MVP problems by Audet and Dennis [13].

Audet and Dennis later adapted a lemma of Torczon [143] to provide a lower bound on the

distance between any two mesh points at each iteration for continuous-variable problems

[14], which was then extended by Abramson [1] to MVP problems. This lower bound is

stated in Lemma 3.15, the result of which is necessary to show that the mesh size parameter

is bounded above in Lemma 3.16. Finally, Theorem 3.17 presents the key result for this

61

section. The proof of Lemma 3.15 is independent of response noise but is included, as found

in [1], for completeness. The proofs for Lemma 3.16 and Theorem 3.17 are modified from

[1] to account for stochastic responses.

Lemma 3.15 For any k ≥ 0, k ∈ Z, let u and v be any pair of distinct mesh points such
that ud = vd. Then for any norm for which all nonzero integer vectors have norm at least 1,

uc − vc ≥ ∆k

G−1i

where the index i corresponds to the combination of discrete variable values defined by

ud = vd.

Proof. From (3.8), u, v ∈ Mk(Xk) = Θ
d ×

imax

i=1
Xc
k +∆kD

iz ∈ Θc : z ∈ Z|Di|
+ . Let

uc = Xc
k +∆kD

izu and v
c = Xc

k +∆kD
izv where zu, zv ∈ Z|D

i|
+ . Since ud = vd but u = v,

then uc = vc. If follows that zu = zv. Then,

uc − vc = Xc
k +∆kD

izv −Xc
k −∆kDizu

= ∆k Di(zv − zu)

= ∆k GiZi(zv − zu)

≥ ∆k
Zi(zv − zu)

G−1i

≥ ∆k

G−1i
.

The last inequality holds because Zi(zv − zu) ≥ 1; i.e., Zi(zv − zu) is a nonzero integer

vector with norm at least 1.

Lemma 3.16 With probability 1, there exists a positive integer bu < ∞ such that ∆k ≤
∆0τ b

u

for any k ≥ 0, k ∈ Z.

Proof. By assumptionA1, the search domain is bounded so the discrete variables can only

take on a finite number of values. Let imax denote this number and let I = {1, . . . , imax}.

Also under assumption A1, for each i ∈ I, let Λi be a compact set in Rnc containing

62

all MGPS-RS iterates whose discrete variable values correspond to i ∈ I. Let γ = max
i∈I

diam(Λi) and β = max
i∈I

G−1i , where diam(·) denotes the maximum distance between any

two points in the set. If ∆k > γβ, then by Lemma 3.15 (with v = Xk), any mesh point u

with uc = Xc
k would be outside of

i∈I
Λi. This can be seen by the following:

uc −Xc
k ≥ ∆k

G−1i
>

γβ

G−1i
=

γ max
i∈I

G−1i

G−1i
≥ γ = max

i∈I
diam(Λi) (3.23)

=⇒ uc −Xc
k > max

i∈I
diam(Λi) .

Thus, ∆k > γβ implies that the continuous part of the mesh is devoid of candidates except

for the incumbent. Therefore, Mk(Xk) = Θ
d × {Xc

k} and Pk(Xk) = {Xk}. Furthermore,

the poll set for any discrete neighbor Y of Xk is devoid of candidates except for Y by the

same argument as (3.23) using Lemma 3.15 (with V = Y), so the step is

avoided.

The algorithm can consider a maximum of imax different candidates defined by the

combinations of Θd during a or step. The mesh size parameter grows without

bound only if it is possible to cycle indefinitely between these imax solutions. But Lemma

3.14 guarantees P (KS <∞) = 1 whereKS is the number of consecutive successful iterations

after iteration k. Then the mesh size parameter will have grown, at a maximum, by a

factor of (τmmax)KS and is thus bounded above by γβ(τmmax)KS . Let bu be large enough so

that ∆0τ b
u ≥ γβ(τmmax)KS . Then P (KS < ∞) = 1 =⇒ P (γβ(τmmax)KS < ∞) = 1 =⇒

P (∆0τ b
u

<∞) = 1 =⇒ P (bu <∞) = 1.

Theorem 3.17 The mesh size parameters satisfy P lim inf
k→+∞

∆k = 0 = 1.

Proof. By way of contradiction, suppose there exists a negative integer b such that

∆0τ
b > 0 and P (∆k > ∆0τ

b) = 1 for all k ≥ 0, k ∈ Z. By definition of the update rules,

63

∆k can be expressed as ∆k = τ bk∆0 for some bk ∈ Z (see (3.13)). Since Lemma 3.16 ensures

that bk is bounded above a.s. by b
u, it follows that bk ∈ {b , b + 1, . . . , bu} a.s. Thus, bk

is an element of a finite set of integers which implies that ∆k takes on a finite number of

values for all k ≥ 0.

Now, Xk+1 ∈ Mk ensures that X
c
k+1 = Xc

k + ∆kD
izk for some zk ∈ Z|Di|

+ and some

i ∈ {1, 2, . . . , imax}. Repeated application of this equation leads to the following result over

a fixed i at iteration N ≥ 1, where p and q are relatively prime integers satisfying τ = p
q
:

Xc
N = Xc

N−1 +∆N−1D
izN−1

= Xc
N−2 +∆N−2D

izN−2 +∆N−1DizN−1

=
...

= Xc
0 +∆0D

iz0 +∆1D
iz1 + · · ·+∆N−1DizN−1

= Xc
0 +

N−1

k=0

∆kD
izk

= Xc
0 +D

i
N−1

k=0

∆0τ
bkzk

= Xc
0 +∆0D

i

N−1

k=0

p

q

bk

zk

= Xc
0 +∆0D

i
N−1

k=0

p(bk+b −b)

q(bk+b
u−bu) zk

= Xc
0 +

pb

qb
u∆0D

i
N−1

k=0

p(bk−b)

q(bk−bu)
zk

= Xc
0 +

pb

qb
u∆0D

i
N−1

k=0

p(bk−b)q(b
u−bk)zk

Since p(bk−b) and q(bu−bk) are both integers, then
N−1

k=0

p(bk−b)q(bu−bk)zk is a Di -dimensional

vector of integers (recall zk ∈ Z|D
i|

+). So, the continuous part of each iterate, Xc
k, k =

0, . . . ,N having the same discrete variable values defined by i lies on the translated integer

64

lattice generated by Xc
0 and the columns of

pb

qb
u∆0D

i. Furthermore, the discrete part of

each iterate, Xd
k , lies on the integer lattice Θ

d ⊂ Znd . By assumptionA1, all iterates belong

to a compact set, so there must be only a finite number of possible iterates.

Lemma 3.14 ensures that the algorithm cannot cycle indefinitely between these points

(i.e. the subsequence of consecutive successful iterations is finite a.s.). Thus, as k → +∞,

one of the iterates must be visited infinitely many times a.s., which implies an infinite

number of mesh refinements. But this contradicts the hypothesis that P (∆k > ∆0τ
b) = 1

as k → +∞. Therefore, P (∆k > ∆0τ b) = 0, which implies P lim inf
k→+∞

∆k = 0 = 1.

The results of this section illustrate the importance of the restriction that Di = GiZi

(Equation (3.7)). Under assumption A1, this ensures that the mesh has a finite number of

points in Θ. This, combined with the “finiteness” of incorrectly selected iterates, ensures

that there can only be a finite number of consecutive successful iterations.

3.7.3 Main Results

In this section, the existence of limit points for MGPS-RS iterates is proven. In

addition, limit points are shown to satisfy the first-order necessary conditions for optimality

in Definition 3.2. The results have been modified from [13] and [1] to accommodate the

new algorithmic framework. The following definition, which distinguishes a subsequence of

the unsuccessful iterates, simplifies the analysis.

Definition 3.18 (Refining subsequence) A subsequence of unsuccessful MGPS-RS iterates

{Xk}k∈K (for some subset of indices K) is said to be a refining subsequence if {∆k}k∈K
converges almost surely to zero, i.e., P lim

k∈K
∆k = 0 = 1.

Since ∆k shrinks for unsuccessful iterations, Theorem 3.17 guarantees that the MGPS-

RS algorithm has, with probability 1, infinitely many such iterations. The next theorem,

65

similar to the results from [13] and [1] but modified here for the probabilistic setting,

establishes the existence of certain limit points associated with refining subsequences.

Theorem 3.19 There exists a point x̂ ∈ Θ and a refining subsequence {Xk}k∈K, with
associated index set K ⊂ {k : Xk+1 = Xk} such that {Xk}k∈K converges almost surely to

x̂. Moreover, if N is continuous at x̂, then there exists ŷ ∈ N (x̂) and ẑ = (ẑc, ŷd) ∈ Θ such
that {Yk}k∈K converges almost surely to ŷ and {Zk}k∈K converges almost surely to ẑ where
each Zk ∈ Θ is an endpoint initiated at Y 0k ∈ N (Xk).

Proof. Theorem 3.17 guarantees P lim inf
k→+∞

∆k = 0 = 1; thus there is an infinite subset of

indices of unsuccessful iterates K ⊂ {k : Xk+1 = Xk}, such that the subsequence {∆k}k∈K

converges a.s. to zero, i.e., P lim
k∈K

∆k = 0 = 1. Since all iterates Xk lie in a compact

set, there exists an infinite subset of indices K ⊂ K such that the subsequence {Xk}k∈K

converges almost surely. Let x̂ be the limit point of such a subsequence.

The continuity of N at x̂ guarantees that ŷ ∈ N (x̂) ⊂ Θ is a limit point of a subse-

quence Yk ∈ N (Xk). Let ẑ ∈ Θ be a limit point of the sequence Zk ∈ Θ of

endpoints initiated at Y 0k . Choose K ⊂ K to be such that both {Yk}k∈K converges

a.s. to ŷ and {Zk}k∈K converges a.s., letting ẑ denote the limit point.

For the remainder of the analysis, it is assumed that x̂ and K satisfy the conditions

of Theorem 3.19. The following lemma establishes the first main result, showing that limit

points satisfy necessary condition 2 of Definition 3.2. The direct proof is modified for the

stochastic case from [1], where it was presented as an alternative to the contradictory proof

in [13].

Lemma 3.20 If N is continuous at the limit point x̂, then x̂ satisfies f(x̂) ≤ f(ŷ) a.s. for
all ŷ ∈ N (x̂).

Proof. From Theorem 3.19, the sequences {Xk}k∈K and {Yk}k∈K converge a.s. to x̂ and ŷ,

respectively. Since k ∈ K ⊂ {k : Xk+1 = Xk}, each {Xk}k∈K meets one of the conditions

(3.20)—(3.22). Assumption A8 ensures that the number of iterates satisfying condition

66

(3.22) is finite. Furthermore, since the set iterates meeting condition (3.21) is a subset of

all incorrectly selected iterates, Lemma 3.13 ensures the number of iterates satisfying this

condition is finite almost surely. Therefore, the number of correctly selected iterates in

{Xk}k∈K meeting condition (3.20) must be infinite. Let k denote an unsuccessful iteration

after the last occurrence of both conditions (3.21) and (3.22) and let K = K ∩ {k ≥ k }

which converges a.s. to x̂. Since each iterate {Xk}k∈K meets condition (3.20), f(Xk) <

f(Yk) for all k ∈ K . By the continuity of N and assumption A2, f(x̂) = limk∈K f(Xk) ≤

limk∈K f(Yk) = f(ŷ).

The following lemma is necessary to show stationarity of the iterates Xk, and -

endpoints Zk. It merges two lemmas from [13] and modifies the results

therein for the new algorithmic framework.

Lemma 3.21 Let ŵ be the limit point of a refining subsequence {Wk}k∈K. Then (wc −
ŵc)T∇cf(ŵ) ≥ 0 a.s. for any feasible (wc, ŵd).

Proof. By assumption A2, the mean value theorem applies, i.e., for points x1 and x2

satisfying xd1 = x
d
2,

f(x2) = f(x1) + (x
c
2 − xc1)T∇cf(x) where xc ∈ [xc1, xc2] .

For x1 = Wk, x2 = V = Wk +∆k(d, 0) ∈ Pk(Wk), and any d ∈ Dik ⊆ Di that is feasible

infinitely often, substitution yields

f(V) = f(Wk +∆k(d, 0)) = f(Wk) +∆kd
T∇cf(Wk + λdk∆k(d, 0)) (3.24)

for λdk ∈ [0, 1] that depends on the iteration k and positive basis vector d. Choose k ∈ K

large enough so that the indifference zone condition is satisfied and incorrect selections have

terminated almost surely. Then by condition (3.20), f(V) − f(Wk) ≥ δr(k) where δr(k)

67

depends on k. Furthermore,

f(Wk) ≤ min
V ∈P (Wk)

f(V)− δr(k)

= min
d∈Di

k

f(Wk) +∆kd
T∇cf(Wk + λdk∆k(d, 0)) − δr(k)

= f(Wk)− δr(k) +∆kmin
d∈Di

k

dT∇cf(Wk + λdk∆k(d, 0)) ,

which implies that

min
d∈Di

k

dT∇cf(Wk + λdk∆k(d, 0)) ≥ δk .

Taking the limit as k →∞ (inK) yieldsmind∈Di dT∇cf(ŵ) ≥ 0 a.s. (since limk→∞ δr(k) =

0 by assumption A6). Therefore, dT∇cf(ŵ) ≥ 0 a.s. for any d ∈ Di that is feasible infi-

nitely often.

By assumptionA4, any feasible direction (wc−ŵc) is a nonnegative linear combination

of feasible directions in Di that span the tangent cone of Θc at ŵ. Then for βj ≥ 0,

j = 1, 2, . . . , nd, (w
c − ŵc) = nd

i=1 βjdj and

(wc − ŵc)T∇cf(ŵc) =
nd

j=1

βjd
T
j ∇cf(ŵc) ≥ 0 a.s..

It is now possible to state the second main result. Lemma 3.22 shows that the limit

point x̂ satisfies condition 1 of Definition 3.2.

Lemma 3.22 The limit point x̂ satisfies (xc−x̂c)T∇cf(x̂) ≥ 0 a.s. for any feasible (xc, x̂d).

Proof. The result follows directly from Lemma 3.21 by substituting Xk for Wk as the

refining subsequence, and from results on the sequence {Xk}k∈K of Theorem 3.19.

The remaining result may now be completed. Lemma 3.23 shows that limit points

x̂ and discrete neighbors ŷ that satisfy f(ŷ) = f(x̂) meet condition 3 of Definition 3.2.

Theorem 3.24 collects all the main results into a single theorem.

68

Lemma 3.23 The limit point x̂ and any point ŷ in the set of neighbors N (x̂) satisfying
f(ŷ) = f(x̂), are such that (yc − ŷc)T∇cf(ŷ) ≥ 0 a.s. for any feasible (yc, ŷd).

Proof. Choose k ∈ K large enough so that the indifference zone condition is satisfied

and incorrect selections have terminated almost surely and let K = K ∩ {k ≥ k }. Then

by condition (3.17), f(Y jk) < f(Y j−1k) for all k ∈ K , which implies f(Zk) < f(Yk) for

all k ∈ K . Furthermore, since K is a subset of unsuccessful iterates, condition (3.20) is

satisfied, which implies f(Xk) < f(Zk) for each k ∈ K . By continuity of f and taking the

limit as k →∞ (in K), it follows that f(x̂) ≤ f(ẑ) ≤ f(ŷ). Therefore, f(ẑ) = f(ŷ).

By the differentiability of f , it follows that

(yc − ŷc)T∇cf(ŷ) = f (ŷ; (yc − ŷc, 0)) = lim
t→0

f(ŷ + t(yc − ŷc, 0))− f(ŷ)
t

= lim
k∈K

f(Yk)− f(ŷ)
∆k

= lim
k∈K

f(Yk)− f(ẑ)
∆k

≥ lim
k∈K

f(Zk)− f(ẑ)
∆k

= (zc − ẑc)T∇cf(ẑ) ≥ 0,

where f (ŷ; (yc−ŷc, 0)) denotes the directional derivative of f at ŷ in the direction (yc−ŷc, 0),

and the last inequality follows by substituting Zk for Wk as the refining subsequence in

Lemma 3.21.

Theorem 3.24 The limit point x̂ satisfies first-order necessary conditions for optimality

a.s..

Proof. The result, based on conditions 1—3 of Definition 3.2, follows directly from Lemmas

3.20, 3.22, and 3.23.

3.8 Illustrative Example

Prior to a comprehensive computational evaluation of specific algorithm implementa-

tions in Chapter 5, a basic version of the algorithm is illustrated on a small unconstrained

problem with two continuous variables and one discrete (binary) variable. Consider the

69

response function

F (x) = f(x) +N(0,σ2(f(x)) (3.25)

where N(0,σ2(f(x)) is a normally distributed, mean-zero noise term added to an underlying

true objective function. The variance σ2 of the noise depends on the true function f(x),

which is defined over (x1, x2)
T ∈ R2 and x3 ∈ {0, 1} as

f(x) = f1(x1, x2)(1− x3) + f2(x1, x2)x3 (3.26)

where the functions f1 and f2 are overlapping quadratic functions (see Figure 3.5) as follows:

f1(x1, x2) = (x1 − 9/4)2 + (x2 − 9/4)2 + 1,

f2(x1, x2) = 1/2(x1 − 3/2)2 + 1/2(x2 − 3/2)2 + 7/4 .

The optimum is located at x∗ = (x∗1, x∗2, x∗3) = (
9
4 ,
9
4 , 0) with f(x

∗) = 1.

To compare two different random noise scenarios, the standard deviation of the error

term σ(f(x)) is either proportional or inversely proportional to f :

σ1(f(x)) = f(x), or

σ2(f(x)) =
1

f(x)
.

These test cases are referred to as noise cases 1 and 2, respectively. At optimality, σ1 and

σ2 are equal but diverge for trial points away from optimality.

The two-stage indifference-zone procedure of Rinott for unequal variances [114] was

implemented as the R&S method. This procedure uses two stages of sampling to estimate

the true mean of the response function for each candidate. In the first stage, the sample

variance S2q for each candidate q is computed from a fixed number of response samples for

each candidate. This information is used to determine the number of second-stage samples

70

f(x1, x2, x3) = f1(x1, x2)(1− x3) + f2(x1, x2)x3

Figure 3.5. Example Test Function.

required to guarantee a probability of correct selection. Given s0 first-stage samples with

sample variance S2q for each candidate q, Rinott’s procedure prescribes sq − s0 additional

samples, where

sq = max s0,
gSq

δ

2

, (3.27)

g = g(nC ,α, s0) is Rinott’s constant, and m indicates the smallest integer greater than

or equal to m (ceiling function). Tabulated values for g have been published for com-

monly used parameter combinations but was computed numerically in this investigation by

adapting the code listed in [27] to accommodate changing parameter settings. The objec-

tive function value is then estimated by averaging the response samples over both stages

for each candidate. To satisfy the requirements on the R&S parameters, both δr and αr

were decremented geometrically, i.e. δr = δ0(ρδ)
r and αr = α0(ρα)

r. The following settings

were used in the numerical experiment: s0 = 5, δ0 = 1.0, α0 = 0.4, and ρδ = ρα = .95.

71

For this example, the algorithm was implemented with an empty step. The

direction set consisted of the coordinate axes, i.e. Dik = [I,−I] for all k and both settings

of i. The discrete neighbor set was defined as N (x) = {(x1, x2, x3), (x1, x2, 1 − x3)}. The

step size parameters were set to τ = 9
8 , m

−
k = −2 for all k, and m+k = 1 for all k so that

∆k+1 = (89)
2∆k for refinement and ∆k+1 =

9
8∆k for coarsening. These parameters were

selected so that the search steps lengthened after successful iterations but not so much as

to cause high variance for candidates in the poll set when near the optimal solution. The

initial step size was set to ∆0 = 0.5. The extended poll trigger ξk =
3
4 was used for all k to

ensure that, at the minimum x̄c = (x̄1, x̄2) = (
3
2 ,
3
2) of f2, the surface of f1 is polled since

f1(x̄
c)− f2(x̄c) = 3

8 .

In the numerical experiment, the algorithm was replicated twenty times for each noise

case. All forty replications were initiated from starting solution X0 = (0, 5, 1), f(X0) = 9.

For each noise case, the following metrics were used to gauge the performance:

• average number of candidate solutions visited,
• average distance of terminal solution from x∗: xt − x∗ ,
• average difference of terminal solution in true objective function value from
f(x∗): f t − f∗ , and

• average number of iterations completed.

The distance from optimum was measured as the sum of the Euclidean distance in the

continuous domain and the value of the discrete variable xt − x∗ = (xc)t − (xc)∗ +(xd)t.

Each of the metrics was recorded at ten predetermined stages of algorithm progression,

measured in terms of the number of responses sampled, and averaged over the twenty

replications. The results for noise cases 1 and 2 are presented in Tables 3.1 and 3.2,

respectively.

72

Table 3.1. MGPS-RS Average Performance for Noise Case 1 over 20 Replica-
tions.

Response Candidates

Samples Visited xt − x∗ f t − f∗ Iterations

0 - 4.55 8.00 -

2,500 .9 4.50 7.76 .2

5,000 6.9 4.13 6.26 1.2

7,500 13.5 3.67 4.53 2.5

10,000 22.8 2.85 2.82 4.4

20,000 73.5 .657 .343 13.4

30,000 99.8 .587 .294 17.9

40,000 116.2 .449 .198 20.9

50,000 130.1 .464 .185 23.5

75,000 150.6 .350 .137 27.6

100,000 166.4 .279 .122 30.8

Table 3.2. MGPS-RS Average Performance for Noise Case 2 over 20 Replica-
tions.

Response Candidates

Samples Visited xt − x∗ f t − f∗ Iterations

0 - 4.55 8.00 -

2,500 113.7 .495 .272 19.9

5,000 133.0 .411 .204 23.1

7,500 145.5 .382 .184 25.3

10,000 153.3 .376 .172 26.8

20,000 173.0 .331 .143 30.6

30,000 185.0 .302 .123 32.9

40,000 193.0 .288 .113 34.5

50,000 200.5 .264 .095 36.0

75,000 213.0 .234 .073 38.5

100,000 222.0 .219 .062 40.3

The results clearly illustrate the effects of the response variance on algorithm perfor-

mance. Since σ2 =
1
81σ1 at the starting solution, the algorithm in noise case 2 is able to

reach better solutions much more rapidly than in noise case 1. In fact, it takes the algorithm

approximately 40,000 response samples in case 1 to reach equivalent progress achieved after

2,500 samples in case 2. After 100,000 response samples, the algorithm in case 2 outper-

forms case 1 by approximately 30% in the number of candidate solutions considered and

73

number of iterations completed while finding a solution roughly twice as good in terms of

quality of the true objective function value. On the other hand, after achieving significant

progress after 2,500 response samples in case 2, progress slows considerably after reaching

a region of the search space where the standard deviation of the noise approaches unity

and the surface begins to flatten. For noise case 1, the error control measures built into

the algorithm enable consistent progress despite the challenging situation introduced by

high response variation. It should be noted that response variation has a profound effect

on computational requirements relative to the deterministic case. By comparison, applying

the algorithm to the noise-free version of this problem (i.e. σ = 0) produced a solution that

was within 0.0134 of x∗ with an objective function value within 0.000181 of f(x∗) after 300

function samples.

For both noise cases, the solution found after 100,000 response samples was on the

surface of f1. In noise case 1, sixteen of the twenty replications had permanently reached the

surface of f1 by 20,000 response samples, which accounts for the significant improvement

between 10,000 and 20,000 samples in Table 3.1. In noise case 2, all iterates after the

eleventh iteration, on average, remained on f1, well before 2,500 responses were evaluated.

In the most extreme case under noise case 2, the maximum number of iterations required

before all iterates remained on f1 was twenty-three. In this case, the algorithm found a point

in the continuous design space for which the values of f1 and f2 were very close in magnitude.

In particular, at the point x̃c = (1.645, 1.692), the value |f1(x̃c) − f2(x̃c)| = 0.111. The

algorithm alternated between discrete neighbors (x̃c, 0) and (x̃c, 1) from iteration 13 until

iteration 23, during which time approximately 2,000 response samples were obtained and the

number of R&S procedures performed by the algorithm increased from 18 to 37. As a result,

the indifference zone parameter had been reduced from δ18 = (.95)
18 = 0.397 > |f1(x̃c)−

74

f2(x̃c)| to δ37 = (.95)37 = 0.150 > |f1(x̃c)−f2(x̃c)|. Therefore, the R&S procedure could not

prescribe enough samples to detect the best solution among the two discrete neighbors until

δr had been reduced to a value that approached the absolute difference between the two

neighbors. This isolated case illustrates the potential computational requirements necessary

to detect small differences between candidate solutions in the presence of random variation.

To illustrate the asymptotic behavior of the algorithm, the algorithm was run again

starting from the optimal point X0 = x∗ = (94 ,
9
4 , 0) with the standard deviation of the

noise term σ = 2 throughout the design space. For this run, the same parameter settings

as in the original experiment were used except for the initial significance level, which was

set to α0 = 0.8 to encourage erroneous iterate selections for the purpose of illustration. The

run was terminated after two million response samples. The iteration history is depicted

in Figure 3.6. The figure also plots the decay of the indifference zone parameter as the

downward sloping curve as well as the cumulative response samples as the upward sloping

dashed line (with scale on the right).

The plot shows that, although starting from the optimal point, many unimproving

steps are taken, indicated by an increase in true objective value of the iterates. However, the

magnitude of the difference between successive iterates, in most cases, is within the tolerance

defined by the indifference zone line. Three exceptions occur at iterations 1, 8, and 13, when

the true function value for the iterates jumps above the indifference zone boundary2. In

these three cases, the significance levels were α1 = .8(.95) = 0.76, α8 = .8(.95)
8 = 0.53, and

α13 = .8(.95)13 = 0.41, respectively. (Note that no extended poll steps were performed so

r = k throughout the iteration sequence.) Therefore, the three iterates selected at iterations

1, 8, and 13 represent incorrect selections for which the probability of incorrect selection

2Iteration 4, as well as iterations 36 through 40, are not examples of these exceptions, even though the

objective function values exceed f(x∗) + δk, because the differences between f(xk) at these iterations and
that of the previous iterate do not exceed δk.

75

True Objective Function

Cumulative Response Samples

f (x*) + δk

Figure 3.6. Asymptotic behavior of MGPS-RS, shown after 2 million response
samples.

was 0.76, 0.53 and 0.41, respectively. However, as the iteration sequence continues, the

search settles down near the optimal point and the magnitude of unimproving solutions

decreases commensurate with the indifference zone parameter. Also, no additional iterates

are incorrectly selected since the significance level (not shown in the plot) is decaying at

the same rate as the indifference zone parameter. However, the costs associated with error

control during the latter stages of the search are evident with the rapid increase in response

samples required per iteration.

Figure 3.6 illustrates the computational implications of achieving better solutions as

the search progresses. Clearly, for MGPS-RS algorithms to have practical value, it is

important to address concerns regarding the sampling effort required. In this chapter,

the mathematical framework of MGPS-RS was presented and its convergence properties

rigorously established. In the following chapter, various implementation alternatives are

described that seek efficient use of the sampling budget.

76

Chapter 4 - Algorithm Implementations

In this chapter, the details of the various MGPS-RS algorithm implementations are pre-

sented. Particular attention is given to implementations that have the potential to provide

computational enhancements to the basic algorithm. Two essential ideas are presented that

specifically address methods to improve the computational performance of the algorithms.

The first, described in Section 4.1, is the use of modern ranking and selection techniques

to offer more efficient sampling strategies relative to the basic procedure of Rinott. The

second idea is to augment the search by using surrogate functions during the step

as a means to model the relationship between input designs and response outputs based

on previously obtained samples. The goal of this approach, introduced in Section 4.2, is to

develop an inexpensive method to nominate high quality trial points and thus accelerate

algorithm convergence. Another important concept relevant to computational performance

is discussed in Section 4.3, which proposes a strategy for establishing appropriate algo-

rithm termination criteria. The strategy seeks to avoid additional sampling when further

sampling would lead to marginal returns on objective function value improvement. Section

4.4 unifies the various implementation considerations into an overarching algorithm design

that describes implementation in further detail for the algorithm substeps and summarizes

the algorithm parameters. Section 4.5 summarizes the key points of the chapter.

4.1 Specific Ranking and Selection (R&S) Procedures

An important concern for implementation is the selection of specific R&S procedures.

Since unknown and unequal variances are allowed, a procedure having at least two stages

is required, allowing the sample variance to be computed in an initial stage. Three such

procedures were selected for implementation and computational evaluation: Rinott’s two-

77

stage procedure [114], a screen-and-select (SAS) procedure of Nelson et al. [99], and the

Sequential Selection with Memory (SSM) procedure of Pichitlamken and Nelson [109].

Rinott’s two-stage procedure, described in Section 3.8, is a well-known, simple proce-

dure that satisfies the probability of correct selection guarantee (3.15). It uses the sample

variance from a fixed number of first-stage samples for each candidate to determine the

number of second-stage samples required to guarantee the probability of correct selection.

A detailed listing of Rinott’s procedure, adapted from [27, p.61], is provided in Figure 4.1.

In the procedure, the number of second-stage samples is dependent on Rinott’s constant

g = g(nC ,α, ν), which is the solution to the equation

∞

0

∞

0
Φ

g

ν(1/x+ 1/y)
fυ(x)dx

nC−1
fυ(y)dy = 1− α (4.1)

where Φ(·) is the standard normal cumulative distribution function and fυ(·) is the proba-

bility distribution function of the χ2-distribution with υ degrees of freedom. This constant

can be obtained from a table of values or computed numerically. To account for the chang-

ing parameter α in the computational evaluation of Chapter 5, a MATLAB
R
m-file was

written to compute g that was based on the FORTRAN program RINOTT listed in Appen-

dix C of [27].

Rinott’s procedure can be computationally inefficient because it is constructed based

on the least favorable configuration assumption that the best candidate has a true mean

exactly δ better than all remaining candidates, which are all tied for second best [140]. As

a result, the procedure can overprescribe the number of required second stage samples in

order to guarantee the P{CS}. Furthermore, the procedure has no mechanism to consider

the sample mean of the responses after the first stage, and therefore cannot eliminate

clearly inferior candidates prior to conducting additional sampling. These characteristics

78

For a candidate set C indexed by q ∈ {1, . . . , nC}, fix the common number of replications s0 ≥ 2
to be taken in Stage 1, significance level α, and indifference zone parameter δ. Find the constant

g = g(nC ,α, ν) that solves (4.1) where ν = s0 − 1.

Stage 1 : For each candidate q, collect s0 response samples Fqs, s = 1, . . . , s0.

Stage 2 : Calculate the sample means and variances based on the stage 1 samples, F̄q(s0) =
s−10

s0
s=1 Fqs and S

2
q = ν−1 s0

s=1(Fqs − F̄q(s0)). Collect sq − s0 additional response samples for
candidate q = 1, 2, . . . , nC where

sq = max s0, (gSq/δ)
2 .

Calculate F̄q(sq) = s
−1
q

sq
s=1 Fqs, q = 1, 2, . . . , nC based on the combined results of the Stage 1 and

Stage 2 samples. Select the candidate associated with the smallest sample mean over both stages,

min
q
{F̄q(sq)}, as having the δ-near-best mean.

Figure 4.1. Rinott Selection Procedure (adapted from [27])

are especially problematic within an iterative search framework since the R&S procedure is

executed repeatedly and the number of unnecessary samples accumulates at each iteration,

limiting the progress of the algorithm relative to a fixed budget of response samples.

The SAS procedure alleviates some of the computational concerns of Rinott’s proce-

dure by combining Rinott’s procedure with a screening step that can eliminate some solu-

tions after the first stage. For an overall significance level α, significance levels α1 and α2

are chosen for screening and selection, respectively, such that α = α1+α2. After collecting

s0 samples of each candidate in the first stage, those candidates with a sample mean that is

significantly inferior to the best of the rest are eliminated from further sampling. The set

of surviving candidates is guaranteed to contain the best with probability at least 1 − α1

as long as the indifference zone condition is met. Then, sq − s0 second stage samples are

required only for the survivors according to (3.27) except at significance level α2 instead of

α. Nelson et al. [99] prove that the combined procedure satisfies (3.15). A detailed listing

of the combined screen-and-select procedure is provided in Figure 4.2.

79

For a candidate set C indexed by q ∈ {1, . . . , nC}, fix the common number of first-stage samples
s0 ≥ 2, overall significance level α = α1 + α2, screening significance level α1, selection significance

level α2, and indifference zone parameter δ. Set t = t
(1−α1)

1
nC−1 ,ν

and g = g(nC ,α2, ν), where tβ,ν

is the β quantile of the t distribution with ν = s0 − 1 degrees of freedom and g is Rinott’s constant

that solves (4.1).

Stage 1. (Screening) For each candidate q = 1, 2, . . . nC, collect s0 response samples Fqs, s =
1, . . . , s0. Calculate the sample means and variances based on the initial s0 samples, F̄q(s0) =
s0
s=1 Fqs/s0 and S

2
q = ν−1 s0

s=1(Fqs − F̄q(s0))2. Let

Wqp = t
S2q

s0
+
S2p

s0

1/2

for all q = p.

Set Q = q : 1 ≤ q ≤ nC and F̄q(s0) ≤ F̄p(s0) + (Wqp − δ)+,∀p = q where y+ = max{0, y}. If
|Q| = 1, then stop and report the only survivor as the best; otherwise, for each q ∈ Q compute the
second stage sample size

sq = max s0, (gSq/δ)
2 .

Stage 2. (Selection) Collect sq − s0 additional response samples for the survivors of the screening
step q ∈ Q and compute overall sample means F̄q(sq) = s−1q sq

s=1 Fqs, q ∈ Q. Select the candidate
associated with the smallest sample mean over both stages, min

q
{F̄q(sq)}, as having the δ-near-best

mean.

Figure 4.2. Combined Screening and Selection (SAS) Procedure (adapted from
[99])

The SSM procedure extends the notion of intermediate elimination of inferior solutions.

It is a fully sequential procedure specifically designed for iterative search routines. A fully

sequential procedure is one that takes one sample at a time from every candidate still in

play and eliminates clearly inferior ones as soon as their inferiority is apparent. The SSM

procedure is an extension of the procedure presented in [69]; the difference being that SSM

allows the re-use of previously sampled responses when design points are revisited where

the procedure in [69] does not.

In SSM, an initial stage of sampling is conducted to estimate the variances between

each pair of candidates, indexed by q, p ∈ {1, . . . , nC}, according to,

S2qp =
1

ν

s0

s=1

(Fqs − Fps − [F̄q(s0)− F̄p(s0)])2. (4.2)

80

This is followed by a sequence of screening steps that eliminates candidates whose cumula-

tive sums exceed the best of the rest plus a tolerance level that depends on the variances

and parameters δ and α. Between each successive screening step, one additional sample is

taken from each survivor and the tolerance level decreases. The procedure terminates when

only one survivor remains or after exceeding a maximum number of samples determined

after the initial stage. In the latter case, the survivor with the minimum sample mean is

selected as the best. Pichitlamken [108] proves that SSM satisfies (3.15). An advantage of

this method is that the re-use of previously sampled responses can lead to further compu-

tational savings. A detailed listing of SSM is shown in Figure 4.3.

The latter two R&S procedures were implemented because they offer more efficient

sampling methods relative to Rinott’s procedure when the least favorable configuration

assumption does not hold; however, this advantage does not come without cost. In order

to reduce sampling, they must repeatedly switch among the various candidates. If each

candidate represents a single instance of a simulation model, then there may be a sizable

switching cost that can require, for example, storing the state information of the current

model, saving relevant output data, replacing the executable code in active memory with

the code of the next model, and restoring the state information of the next model [59].

An important element of evaluating the R&S procedures in the MGPS-RS framework is to

consider the number of cumulative switches required, where the term switch denotes each

time the algorithm must return to a previously sampled candidate for further sampling

during the same iteration.

Rinott’s procedure incurs no switches because the second stage of sampling for each

candidate can begin immediately after the first stage since the number of second stage

samples does not depend on comparisons of output data between candidates. The SAS

81

Step 1. Initialization. For a candidate set C indexed by q, p ∈ {1, . . . , nC}, fix the common number
of minimum samples s0 ≥ 2, significance level α, and indifference zone parameter δ. Let V denote

the set of solutions visited previously. Let V c ⊆ C denote the set of solutions seen for the first time.
For each Yq ∈ V c, collect s0 response samples Fqs, s = 1, . . . , s0. For each Yq ∈ V ∪C with sq stored
responses, collect additional response samples Fqs, s = sq, sq + 1, . . . , s0 and set sq = s0. Update

V c = V c ∪ Yq and V = V \Yq. Compute variance S2qp using (4.2) where ν = s0 − 1.

Step 2. Procedure parameters: Let

aqp =
νS2qp

2δ

nC − 1
2α

2/ν

− 1 . (4.3)

Let Rqp =
2aqp
δ , Rq = max

q=p
{Rqp}, and R = max

q
{Rq}. If s0 > R, then stop and select the solution

with the lowest F̄q(s0) = s−10
s0
s=1 Fqs as the best. Otherwise, let Q = {1, . . . , nC} be the set of

surviving solutions, set t = s0 and proceed to Step 3. From here on V represents the set of solutions
for which more than t observations have been obtained, while V c is the set of solutions with exactly

t observations.

Step 3. Screening : Set Qold = Q. Let

Q = q : q ∈ Qold and Tq ≤ min
q∈Qold,q=p

{Tp + aqp}+ tδ
2

(4.4)

where

Tp =
t
s=1 Fps for Yp ∈ V c
tF̄p(sp) for Yp ∈ V .

In essence, for Yq with sq > t, tF̄q(sq) is substituted for
t
s=1 Fqs.

Step 4. Stopping Rule: If |Q| = 1, then stop and report the only survivor as the best; otherwise,
for each q ∈ Q and Yq ∈ V c, collect one additional response sample and set t = t+ 1. If t = R+ 1,
terminate the procedure and select the solution in Q with the smallest sample mean as the best;

otherwise, for each q ∈ Q and Yq ∈ V with sq = t, set V c = V c∪Yq and V = V \Yq and go to Step 3.

Figure 4.3. Sequential Selection with Memory (adapted from [109])

procedure of Figure 4.2 requires a single switch for each candidate that survives the screen-

ing step if a second stage is necessary. The SSM procedure requires a switch each time an

additional sample is collected in Step 4 of Figure 4.3, which can potentially lead to a large

number of switches if the number of candidates is large and if the candidates are nearly

homogeneous in terms of mean response. The computational evaluation of Chapter 5 ad-

dresses the tradeoff between sampling costs and switching costs.

82

4.2 Use of Surrogate Models

To further address computational enhancements for MGPS-RS algorithms, an optional

step was implemented to exploit the flexibility of the pattern search framework

with the goal of accelerating convergence to a near-optimal region of the design space. In

particular, previously sampled points evaluated prior to and during the search are used

to construct a surrogate function that approximates the true objective function. This

function is then searched during the step to nominate high quality trial points. If

the surrogate is reasonably accurate and can be evaluated inexpensively relative to the cost

of generating response samples, then the search may progress to good solutions with fewer

cumulative samples than if no step is used. Even if the initial surrogate is poor,

convergence is still guaranteed and a savings may still be achieved (see [31]).

Paramount to the construction of surrogates is the selection of a family of plausible

functions for use in approximating the true objective function. To avoid assuming a specific

parametric representation of the underlying structure of f , an estimation technique is used

from the nonparametric regression literature; the Nadaraya-Watson estimator [95, 151] is

used to approximate the objective function at a point x according to (2.8). In this disser-

tation research, the commonly used multivariate Gaussian kernel function, originally pro-

posed in univariate form by Parzen [105], is used. This results in the regression equation

f̂(x) =

N

j=1

F̄j exp −D2
j

2h2

N

j=1

exp −D2
j

2h2

(4.5)

where D2j = (x − xj)2 represents the squared Euclidean distance from x to xj and h ≥ 0

is a smoothing parameter that determines the width of the kernel centered at each site

xj. For this reason, h is often called the bandwidth. The estimator f̂ is referred to as the

83

surrogate function. The regression function (4.5) has also been described in the context of

generalized regression neural networks [135].

As discussed in Section 2.1.5, the estimator f̂ can be thought of as the weighted average

of all response means, F̄j, where the weight received by F̄j depends on the distance between

the corresponding xj and the estimation point. The bandwidth h essentially determines

the degree of nonlinearity in the surrogate function. As h increases, the curvature in f̂

decreases such that, when h is very large, f̂ is a constant that assumes the mean value

of all F̄j; i.e.,
1
N

N
j=1 F̄j. Smaller values of h allow more curvature in f̂ but can cause

outliers to have too great an effect on the estimate. If h is zero, f̂ assumes the value of F̄j

for the corresponding xj that is nearest the estimation point. The effect of the bandwidth

value is illustrated in Figure 4.4, where the surrogate function (4.5) is fit to the following

eight input/response pairs: (1, 180), (2, 189), (3, 170), (4, 188), (5, 207), (6, 212), (7, 196),

and (8, 257). The figure shows that as the bandwidth increases, the surrogate function

becomes less descriptive in terms of the curvature of the surface, eventually flattening to a

horizontal line equalling the mean of the responses.

Figure 4.4. Smoothing effect of various bandwidth settings for fitting a surface
to eight design sites in one dimension.

84

An advantage of the kernel regression approach is its simplicity. To evaluate a surrogate

function at a design point, all that is required is storage of the pairs (xj , F̄j) and an

“appropriate setting” for the lone bandwidth parameter. However, care must be taken in

the practical consideration of selecting this setting. In this dissertation research, the well-

known leave-one-out cross-validation method [55, p. 152] is used. In this method, the

bandwidth is first set to a fixed value, and the estimator f̂ is computed according to (4.5)

at design site xj, except that xj is excluded from (left out of) the summand

f̂j(xj , h) =

N

=1, =j

F̄ exp −D2

2h2

N

=1, =j

exp −D2

2h2

.

The squared error (f̂j(xj, h) − F̄j)2 is then recorded and summed over all sites xj, j =

1, . . .N . The resulting sum of squared errors (SSE),

SSE(h) =
N

j=1

(f̂j(xj , h)− F̄j)2,

is then used as a criterion for evaluating h. This procedure is repeated over a range of

bandwidth values and the setting that delivers the smallest SSE is selected.

To build the original surrogate function prior to initiating the search, it is necessary to

select design sites x1, . . . , xN via some appropriate experimental design technique. For this

purpose, latin hypercube sampling (LHS) [88] is used. In LHS, a total of p equally-spaced

values for each of the nc continuous variables are used as components of the design site

vectors. These values are randomly matched to form p design sites. If N = p, then each of

the p values is represented exactly once in the set of design sites x1, . . . , xN , and the design

is said to be of strength one. Designs of strength two (N = 2p) are used in this dissertation

research so that the design space is sampled more densely; the random matching operation

85

is performed twice. Figure 4.5 illustrates latin hypercube samples of strengths one and two

for a two-dimensional design space.

Strength 1 Strength 2

x1
x1

x2x2

Figure 4.5. Examples of Latin Hypercube Samples of Strengths 1 and 2 for p = 5.

Once the surrogate function is built, it can be utilized in the pattern search framework

as an inexpensive means to nominate trial points from the mesh Mk in the step

of the algorithm. After trial points are evaluated, they are then added as design sites that

enhance the accuracy of the surrogate function. A straightforward approach is simply to

minimize f̂ on the mesh directly using any deterministic search routine. However, such a

greedy approach may inhibit improvements in accuracy of the surrogate function because

the trial points will cluster in a particular region of the design space.

Alternatively, the technique of Torczon and Trosset [145] is used to seek improvements

in f̂ while simultaneously seeking space-filling points that could improve the accuracy of the

surrogate function. Torczon and Trosset [145] propose a biobjective function of the form,

m(x) = f̂(x)− λd(x) (4.6)

86

where d(x) = min x− xj 2 is the distance from x to the nearest previously sampled design

site and λ ≥ 0 determines the relative weight placed on the space-filling objective. The

function m(x) is referred to as the merit function.

The surrogate function f̂ is a smooth approximation to the unknown objective function

with respect to the continuous variables. If one or more discrete variables change, then the

true objective function may have an entirely different structure. Therefore, when using

surrogates in a mixed-variable pattern search framework, it is necessary to maintain a

surrogate function for each combination of discrete variables i = 1, . . . , imax. Consequently,

the number of initial design sites, surrogate function, merit function, bandwidth, and space-

filling parameter are indexed as Ni, f̂i, mi, hi, and λi, respectively. If Ni design sites are

selected for combination i, each requiring s samples of the response function, then a budget

of imax
i=1 Ni × s response samples is required during algorithm initialization.

The space-filling parameters λi need not remain constant throughout the search. In

fact, as Torczon and Trosset [145] suggest, these parameters should tend to zero so that,

after the surrogate is sufficiently accurate, the algorithm searches the surrogate directly. In

the implementation, initial settings are used that are multiples of the maximum difference

between mean responses of the initial design sites for each combination of discrete variable

values. As the algorithm progresses, the parameters λi decay after each step.

The MGPS-RS algorithm using surrogates is now illustrated on a very simple example

that has two continuous variables and one discrete (binary) variable where each continuous

variable is bounded on the range [−10, 10]. Consider the same additive noise response

function (3.25) and true function (3.26) from Section 3.8. In this example, the functions

f1 and f2 are linear and quadratic functions, respectively, that overlap in the continuous

domain. Therefore, when the discrete variable x3 is 0 (1), the function takes a linear

87

(quadratic) form. The functions are defined as

f1(x1, x2) = 21− x1 − x2, and

f2(x1, x2) = x21 + x
2
2.

The optimum is located at x∗ = (0, 0, 1) with f(x∗) = 0 and the starting point was set

to x0 = (−5,−5, 0) with f(x0) = 31 so that the initial value of the discrete variable is

suboptimal. The standard deviation of the noise term was set to σ = 2 throughout the

design space.

A progression of the algorithm is illustrated Figure 4.6. For comparison purposes, the

true function is shown in Figure 4.6a. In Figure 4.6b, the initial surrogate surfaces are

shown for each of the two binary variable settings. A strength one LHS design with p = 10

was used to determine the initial design sites and five samples were taken at each design site.

Therefore, a budget of 10×5×2 = 100 response samples was necessary to build the original

surrogates. Figure 4.6c shows the surrogate surfaces after nine iterations of the algorithm.

By this point, 500 response samples had been generated and eight new design sites had

been added to the surrogates. It can be seen how the space-filling parameter has forced

the algorithm to evaluate points relatively far from the minimal point on either surrogate

surface. Figure 4.6d shows the surfaces after 17 iterations and 2000 response samples. The

search has now begun to cluster near the optimal point, as desired. Additionally, the form

of the surface approximating the quadratic function appears to more accurately predict the

true response.

Due to its simplicity, no notable improvements in the speed of convergence are attained

for this example by using surrogates. However, the importance of improvements in surrogate

accuracy is clearly illustrated. Note, for example, that in Figure 4.6b, the minimum on the

88

a.) True objective function b.) Original surrogate surface after
100 response samples

– sites sampled from linear function
– sites sampled from quadratic function

c.) Surrogate surface after 500 response samples
(8 sites added)

– sites sampled from linear function (3)
– sites sampled from quadratic function (5)

d.) Surrogate surface after 2000 response
(15 sites added)
– sites sampled from linear function (3)
– sites sampled from quadratic function (12)

Figure 4.6. Demonstration of the surrogate building process during MGPS-RS
algorithm execution.

89

10 -10 x2

surrogate surfaces is actually located on the surface corresponding to the linear function

f1. By forcing the search to evaluate space-filling points, the accuracy of the surface

corresponding to f2 was eventually improved so that the surrogates correctly predicted a

minimum on the surface of f2. However, this behavior is not always guaranteed and presents

some complications for problems with mixed variables. Fortunately, the algorithm provides

the fail-safe step that can ensure a search of alternative surfaces provided

the extended poll trigger is set sufficiently large. For this reason, it may be beneficial to

set this parameter large enough in early iterations to ensure that enough design points are

sampled to enable accuracy improvements for each surrogate function f̂i.

4.3 Termination Criteria

An important consideration for algorithm implementation involves the decision of when

to stop the algorithm. It is not uncommon for the termination decision to not be based on

any particular strategy, allowing the algorithm to run until expending a fixed budget of iter-

ations or response samples. For MGPS-RS algorithms, this can be disadvantageous because

the search may reach a point where additional sampling leads to diminishing returns as the

parameters αr and δr get very small. Figure 3.6 demonstrated that marginal improvement

can lead to an explosion in sampling requirements after a certain point in the search. This

is further illustrated in Figure 4.7, where the MGPS-RS (without surrogates) sampling re-

quirements per Rinott R&S procedure are plotted for problems of dimension two and ten.

The sampling requirements are based on a direction set D = [I,−I] consisting of positive

and negative coordinate axes. In the figure, the R&S parameters are reduced geometrically

(αr = α0(0.95)r and δr = δ0(0.95)r) from initial settings of α0 = 0.8 and δ0 = 2.0, the vari-

ance is assumed constant at S2 = 1, and the number of first-stage samples is set to s0 = 5.

The number of response samples for each R&S procedure is computed as the product of

90

n = 10

n = 2

α

δ

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

2

)12(
δ
gS

n

Figure 4.7. Growth of response samples required per Rinott R&S procedure for
a fixed response variance of S2 = 1.

the samples required per candidate using Rinott’s second-stage formula gS
δ

2
and the

number of candidates nC = 2n+ 1 (two for each dimension plus the incumbent).

Figure 4.7 demonstrates that, even for small problems, sampling requirements can

become prohibitive (exceeding 30,000 for a single R&S procedure on a 10-dimensional

problem after a modest number of iterations) if the parameters are reduced too aggressively

or if the initial settings are too small. It would be advantageous if the algorithm could

detect, based on some set of rules, a situation in which further progress would require a

sampling effort that exceeds some threshold that reflects a budget restriction. For this

purpose, Rinott’s formula may be adapted for use as a heuristic tool to predict when

sampling requirements become excessive according to a user-defined threshold. Using the

formula, a per-iteration budgeting threshold B of response samples may be expressed as

B ≈ g2nC S

δr

2

91

where g = g(nC ,αr, s0) increases with nC and 1 − αr. Observing that the size of the

candidate set nC = nC(n) is dependent on problem size, the budgeting threshold can be

normalized with respect to problem size by setting it equal to a multiple of g2nC , i.e.,

B = K(g2nC) for some K ∈ R. Therefore, a measure for estimating a point of minimal

returns on sampling may be expressed in terms of the ratio between the response standard

deviation and the indifference zone parameter as

S

δr
≥
√
K . (4.7)

The setting forK may be selected by the user based available sampling budget; larger values

of K allow larger budgeting thresholds. As the algorithm progresses, response variance

can be estimated by computing the sample variance S2 of one of the candidates (e.g., the

incumbent) from an initial sampling stage and comparing its root to the current value of

the indifference zone parameter. If the ratio exceeds the scalar
√
K, then one condition of

termination may be considered satisfied.

Expression (4.7) has intuitive appeal because the difference between the two best

candidates implied by δr can be expressed in terms of the standard deviation of the noise

as K−
1

2S. However, this approach implicitly assumes that the value αr has reached an

appropriate level. That is, it is desirable for αr to have reached a level to ensure sufficient

error control (e.g., αr = 0.05). To ensure that a desirable level of error control for iterate

selection is reached by the end of the search, a secondary criterion is proposed that requires

a sufficiently low value of αr,

αr ≤ αT , (4.8)

where αT is a threshold setting that defines the minimum desired probability of correct

selection 1 − αT from among the candidates at termination. This measure provides a

92

useful means to bound the probability of correct selection at an appropriate level by the

end of the search, but does not prevent αr from decreasing to such a small value that

Rinott’s constant g becomes very large, resulting in increased sampling independent of the

ratio S
δr
. This can be seen in Figure 4.8, which shows the number of second-stage samples

required using Rinott’s procedure for two- and ten-dimensional problems with direction

set D = [I,−I], a fixed response standard deviation to indifference zone ratio of S
δ
= 1,

and first-stage sampling size of s0 = 5. The figure shows that sample size increases only

moderately with 1− α until α gets very close to zero, when it increases dramatically.

Very small values in αr have the same effect (increasing samples) using the SAS R&S

procedure and a similar effect when using the SSM procedure. In the latter case, decreasing

αr causes increasing values of aqp in (4.3) which then increases the tolerance in (4.4) used to

screen candidates. The increased tolerance makes it more difficult to screen out the inferior

candidates so that they are retained for additional samples when they would otherwise be

eliminated from contention as the best design. An approach to algorithm design could allow

the rate of decay of the αr parameter to adapt during the search so that this parameter

does not decay too aggressively and cause excessive sampling. However, adaptive parameter

updates are an item for further study; in this research, the decay rate is determined a

priori and its effect on sampling requirements and algorithm termination analyzed in the

computational evaluation of Chapter 5.

A final criterion for termination invokes the traditional measure used in deterministic

optimization via pattern search. In the original pattern search, Hooke and Jeeves [60]

suggested terminating the search when the step size ∆k reached a sufficiently small value,

∆k ≤ ∆T , (4.9)

93

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

2

)12(
δ
gS

n

n = 2

n = 10

Figure 4.8. Growth in response samples for Rinott’s R&S procedure as α de-
creases for fixed ratio S

δ
= 1.

for some small threshold setting ∆T . This has long been used as a stopping criteria and

has been justified analytically by Dolan et al. [40] by showing that ∆k provides a bound

on first-order stationarity measured in terms of the norm of the gradient ∇f(xk) .

In the present case, with noisy response functions, a combination of (4.7), (4.8), and

(4.9) is proposed as criteria for terminating MGPS-RS algorithms. The condition (4.9)

requires that enough unsuccessful iterations have occurred so that the poll set essentially

converges to a set of points in near proximity to each other. However, condition (4.8)

provides a safeguard to prevent a sequence of erroneous selections from causing the step size

to decrease to a small value, prematurely terminating the algorithm if only the traditional

criterion (4.9) were used. Finally, the intent of (4.7) is to provide a heuristic means to

signal the onset of inflated sampling requirements caused by a high ratio of response noise

to indifference zone parameter.

4.4 Algorithm Design

With the various implementation details defined, the overall design of the algorithm

may now be described. The algorithm was coded in the MATLAB
R
programming lan-

94

guage; a flow chart in Figure 4.9 shows the general sequence of steps taken by the algorithm

code. The figure shows the interface between the algorithm and a stochastic simulation

model via the R&S procedure. A more detailed mathematical description of the algorithm

is shown in Figure 4.10, which is an update to Figure 3.4 to include the use of surrogates

in the step.

4.4.1 Building the Surrogate During Initialization

The first step in algorithm execution is the initialization step. When using surrogates,

initialization requires building initial surrogate functions for each combination of design

variables. Besides the number of design sites and samples per design site to select, there

are other important surrogate-building considerations that must be taken into account.

First, the boundaries of the region used for the initial latin hypercube sampling designs

must be defined. If the variables are bounded, then the lower and upper limits of this

region are simply set to the lower and upper bound vectors l and u, respectively. If some

or all variables are unbounded, then the range for each variable must be decided on by the

user and this becomes a parameter in the initialization step.

If there are linear constraints, then a second consideration involves what to do with

design sites that are infeasible with respect to the linear constraints; that is, the feasible

sampling region may be irregular (nonrectangular) due to the constraints. One approach

is to simply discard infeasible design sites prior to sampling [32]. This is appropriate if the

stochastic model is undefined for infeasible designs; however, it results in a loss of some

design sites that can negatively impact accuracy of the surrogate. In this research, it is

assumed that infeasible designs can be sampled and are retained in the set of design sites

in order to improve surrogate accuracy, particularly in regions near the linear constraint

boundaries.

95

SEARCH?

Success?

Coarsen mesh

Add trial point to
design sites;

Calibrate surrogate

Success?

Success?

Terminate?

Add new iterate
to design sites;

Calibrate surrogate

Add new iterate
to design sites;

Calibrate surrogate

Add new iterate
to design sites;

Calibrate surrogate

Save results

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

POLL step

EXTENDED

POLL step

Stochastic
Simulation

SEARCH step;
Search surrogate(s)

Refine mesh

Candidate set, C

Candidate vector,
Yq∈C

qs
iqi YF 1)}({ =

Estimated best, Y[1]∈C
R&S Procedure

• Rinott,
• SAS, or
• SSM

Initialize;
Build surrogate(s)

Samples

Figure 4.9. Algorithm flow chart for MGPS-RS using surrogates.

96

MGPS-RS Algorithm Using Surrogates

Initialization: For each combination of discrete variables i = 1, . . . , imax, do the following

• Select Ni design sites and set the number of samples s per design site.
• Collect the initial Ni×s samples and compute mean responses F̄ ij for each design
site j = 1, . . . Ni.

• Calibrate hi using the leave-one-out cross-validation method, construct f̂i, and
set space-filling parameter λi ≥ 0.

Set the iteration counter k to 0. Set the R&S counter r to 0. Choose a feasible starting point,

X0 ∈ Θ. Set ∆0 > 0, ξ > 0, α0 ∈ (0, 1), and δ0 > 0.

Until termination criteria are satisfied, do the following:

1. S step: Find a candidate Y on the meshMk(Xk) defined in (3.8) that minimizes
∪imaxi=1mi where mi is defined in (4.6). Use Procedure RS({Y,Xk}, αr, δr) to return
the estimated best solution Ŷ[1] ∈ {Y,Xk}. Add Y as a design site and recalibrate the

appropriate hi, update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ[1] = Xk, the step

is successful, update Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (3.12), and k = k + 1 and
repeat Step 1. Otherwise, proceed to Step 2.

2. P step: Set extended poll trigger ξk ≥ ξ. Use Procedure RS(Pk(Xk) ∪ N (Xk),
αr, δr) where Pk(Xk) is defined in (3.9) to return the estimated best solution Ŷ[1] ∈
Pk(Xk) ∪ N (Xk). Update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ[1] = Xk, the

step is successful, add Ŷ[1] as a design site and recalibrate the appropriate hi, update

Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (3.12), and k = k + 1 and return to Step 1.
Otherwise, proceed to Step 3.

3. E step: For each discrete neighbor Y ∈ N (Xk) that satisfies the
extended poll trigger condition F̄ (Y) < F̄ (Xk) + ξk, set j = 1 and Y

j
k = Y and do the

following.

a. Use Procedure RS(Pk(Y
j
k), αr, δr) to return the estimated best solution Ŷ[1] ∈

Pk(Y
j
k). Update αr+1 < αr, δr+1 < δr, and r = r+1. If Ŷ[1] = Y

j
k , set Y

j+1
k = Ŷ[1]

and j = j + 1 and repeat Step 3a. Otherwise, set Zk = Y
j
k and proceed to Step

3b.

b. Use Procedure RS(Xk ∪ Zk) to return the estimated best solution Ŷ[1] = Xk or

Ŷ[1] = Zk. Update αr+1 < αr, δr+1 < δr, and r = r + 1. If Ŷ[1] = Zk, the step

is successful, add Ŷ[1] as a design site and recalibrate the appropriate hi, update

Xk+1 = Ŷ[1], ∆k+1 ≥ ∆k according to (3.12), and k = k + 1 and return to Step 1.
Otherwise, repeat Step 3 for another discrete neighbor that satisfies the extended

poll trigger condition. If no such discrete neighbors remain, set Xk+1 = Xk,

∆k+1 < ∆k according to (3.11), and k = k + 1 and return to Step 1.

Figure 4.10. MGPS-RS Algorithm using Surrogates for Stochastic Optimization

97

A third consideration involves defining the region of the design space within which

the surrogate function can be trusted. This is relevant for unbounded problems in which a

user-defined range must be established for the initial surrogate. Defining such a region is

important because kernel regression methods are interpolatory since the regression surface

approaches a constant hyperplane, with a value equal to the mean response of the nearest

design site, outside the sampling region. In this research, the radius radS of the “searchable”

region in the step is approximated as one-half of the maximum Euclidean distance

between any pair of the initial design sites. During the step, the search is restricted

to a ball centered at the starting point with radius radS.

A final consideration involves scaling the design sites so that they have approximately

the same ranges when building and evaluating the surrogate function. Scaling is important

because variable ranges may be quite different due to differing bounds but the bandwidth

parameter prescribes the same width of the underlying Gaussian in each dimension. In the

algorithm, scaling is accomplished by normalizing each variable of the design site vector;

that is, subtracting the mean and dividing by the standard deviation. For design site

xj = [x
1
j , x

2
j , . . . , x

nc

j]
T , the normalized elements are represented as

x̃j =
xj − x
σ

, = 1, . . . , nc

where x = 1
N

N
j=1 xj and σ = 1

N−1
N
j=1(xj − x)

1/2
. Since the surrogate is built

with respect to normalized design sites, then the trial points in the step are also

normalized before being evaluated with respect to the surrogate function.

The final steps conducted before initiating the search are, for each i = 1, . . . , imax, to

calibrate hi using leave-one-out cross-validation, and assigning a value to the initial space-

filling parameter λi. As mentioned in Section 4.2, initial settings of λi, i = 1, . . . , imax, are

used that are a multiple of the maximum difference between mean responses of the initial

98

design sites for each combination of discrete variable values

λi = θi max
j, ∈{1,...,Ni}

F̄ ij − F̄ i , i = 1, . . . , imax,

where the scalars θi become parameters that define λi, i = 1, . . . , imax, during initialization.

As the algorithm progresses, the parameters λi, i = 1, . . . , imax, are halved after each

step.

4.4.2 Algorithm Search Steps and Termination

After initialization is complete, the search begins by seeking a mesh point that mini-

mizes the merit function(s) (defined in (4.6)) in Step 1. In this research, pattern search is

used for this purpose although, in general, any search procedure could be used, including a

random draw from viable mesh points. Beginning from the incumbent, pattern search ap-

plied to the merit function is carried out in the continuous domain through a series of

steps using the current value of the step size parameter ∆k and the direction setD
i to define

the neighboring mesh points for discrete variable combination i. Once a local optimizer has

been found for the current i, then the discrete neighbors at the optimal point are evaluated

with respect to their merit function to check for further improvement. If no improvement

is found among the discrete neighbors, then extended polling is conducted in the continu-

ous neighborhood of all discrete neighbors to take advantage of the relative inexpense of

evaluating the merit functions compared to response function sampling. The search of the

merit function(s) terminates with the selection of a single trial point to be paired with the

incumbent design in a candidate set that is passed to the R&S procedure. The

step culminates after the estimated best design is returned from the R&S procedure. Re-

gardless of whether the trial point obtained in the step successfully replaces the

99

incumbent as the new iterate, its mean response is recorded so the point may be added as

a new design site for the surrogate function in order to improve surrogate accuracy.

The step and step function as described in Section 3.6; how-

ever, if surrogates are used, an additional step is added after their termination. If either

step results in a success, then the new iterate is added as a design site. The reasons why

other trial points evaluated during the step and step are not added

are twofold. First, these steps are more localized than the step, so that the points

evaluated will tend to cluster near the incumbent, giving artificially high weight in that re-

gion for surrogate evaluation. By contrast, the step intentionally seeks points that

help fill the experimental design space used to build the surrogate, so even trial points of

unsuccessful steps are worthy of adding as design sites for the purpose of surro-

gate accuracy enhancement. Secondly, if too many design sites are added, evaluating the

surrogate function can become overly expensive, which defeats its purpose. This can be

seen by reviewing Equation (4.5) and noting that the expression requires two summations

of N terms where N is the number of design sites. In addition, the summation elements

require the computation of the Euclidean distance between a trial point and a design site.

A fine mesh can lead to many trial points evaluated during the step, which can

result in many evaluations of (4.5). Since many points may be evaluated during the

step and step, it would be counterproductive to add all of them as design

sites; therefore, only new iterates after successful steps are added. Any time a new design

site is added, the current bandwidth may not provide the minimum sum of squared error

over the set of augmented design sites. For this reason, the algorithm calls the calibration

routine to recalibrate the appropriate bandwidth parameter and improve the accuracy of

the surrogate.

100

It should also be mentioned that at the beginning of the step, the direction

set Dk is updated to ensure conforming directions are included when near the constraint

boundaries. The algorithm used for computing conforming directions was adapted from

Abramson [1, p. 49], which is equivalent to the original algorithm of Lewis and Torczon

[81]. For completeness, the algorithm listing is shown in Figure 4.11. This algorithm is

valid in the absence of degenerate constraints.

The use of surrogates to augment the search is a valuable enhancement to the al-

gorithm. However, the portion that ensures its rigor in a stochastic setting is the R&S

procedure. In the algorithm, the R&S procedure manages the interface with the stochastic

model by passing the design variable vector of each candidate to the model and prescribing

the number of response samples necessary to meet the correct selection probability guar-

antee. Depending on the specific procedure used — Rinott’s, SAS, or SSM — the procedure

may also need to manage the overhead necessary to repeatedly switch between candidate

designs to gather the required samples.

Set k ≥ > 0. Assume the current iterate satisfies l ≤ AXk ≤ u.

While k ≥ , do the following:

1. Let Il(Xk, k) = {i : AXk − l ≤ k}
2. Let Iu(Xk, k) = {i : u−AXk ≤ k}
3. Let V denote the matrix whose columns are formed by all members of the set

{−ai : i ∈ Il(Xk, k)} ∪ {ai : i ∈ Iu(Xk, k)}, where aTi denotes the ith row of A.
4. If V does not have full column rank, then reduce k just until |Il(Xk, k)|+ |Iu(Xk, k)|
is decreased, and return to Step 1.

Set B = V (V TV)−1 and N = I − V (V TV)−1V T .

Set Dk = [N,−N,B,−B].
Figure 4.11. Algorithm for Generating Conforming Directions (adapted from [1]
and [81]).

101

Once an iteration has been deemed successful or unsuccessful and the appropriate mesh

updates are completed, the final decision to be made before initiating another iteration is

whether or not to terminate the algorithm. For this purpose, criteria (4.7) — (4.9) may

be assessed for compliance against user defined thresholds. A word of caution is repeated

here that was introduced in Section 4.3. If the αr parameter decays too fast, then very

small values may force large per-iteration samples before the step size ∆k decreases to a

sufficiently small value. In the absence of adaptive decay rates for αr or δr, it may be pru-

dent to make criterion (4.9) optional so that, when the per-iteration sampling requirements

become enormous prior to ∆k ≤ ∆T , the algorithm may be stopped.

4.4.3 Algorithm Parameters

The algorithm design may be concluded by summarizing the various parameter settings

required. For reasons discussed in Section 4.3, perhaps the most critical parameters with

regard to performance are the R&S parameters δr and αr. These parameters have the

most influence over the number of samples required for each R&S procedure executed by

the algorithm. In practice, it is desirable to avoid excessive sampling in regions of the

search space far from optimality. An advantage of the MGPS-RS algorithms is that through

manipulation of these parameters, the sampling requirements can be increased gradually as

the algorithm progresses, so that excessive sampling effort is not wasted at early iterations.

In this study, each parameter is reduced geometrically with r,

δr = δ0(ρδ)
r and αr = α0(ρα)

r.

The initial values δ0 and α0 are set very loose so that, in the early iterations, no samples

are taken beyond the initial s0 required for each candidate in all three procedures used.

102

As the algorithm progresses, error control of iterate selection increases as the search moves

toward the region of optimality.

The adjustable algorithm parameters are summarized in Table 4.1. The parameters

may be grouped into three general categories:

• mesh defining parameters D, ∆0, τ , m−k , m+k , ξ, and ξk;

• R&S parameters δ0, α0, ρδ, ρα, and s0; and
• surrogate defining parameters p, strength, range, θi, and [hlow, hhigh].

Some additional parameters are implicitly defined by parameters in the table. For ex-

ample, the number of design sites Ni to build the initial surrogate are defined as the prod-

Table 4.1. Summary of MGPS-RS parameters.

Parameter Description

D Direction set used for mesh definition, must be positive spanning;

common choices are D = [I,−I] and D = [I,−e] where e is a
vector of ones

∆0 Initial step size, must satisfy ∆0 > 0
τ Mesh update parameter, constant for all k,

must satisfy τ > 1 and τ ∈ Q
m−k Mesh refinement parameter, must satisfy −∞ < m−k ≤ −1

and m−k ∈ Z, can vary by iteration
m+k Mesh coarsening parameter, must satisfy 0 ≤ m+k < +∞

and m+k ∈ Z, can vary by iteration
ξ, ξk Extended poll trigger and lower bound on trigger,

must satisfy ξk ≥ ξ > 0, ξk can vary by iteration
δ0 Initial indifference zone setting, must satisfy δ0 > 0
α0 Initial significance level setting, must satisfy 0 < α0 < 1
ρδ Indifference zone decay parameter, must satisfy 0 < ρδ < 1
ρα Significance level decay parameter, must satisfy 0 < ρα < 1
s0 Number of response samples for R&S procedure initial stage,

must satisfy s0 ≥ 2
p Number of intervals for each continuous dimension in LHS design,

must satisfy 1 ≤ p <∞, p ∈ Z
strength Strength of LHS design, small, positive integer (e.g. 1 or 2)

range Limits on sampling region for LHS design

θi Factor to determine initial setting of space-filling parameter λi,

must satisfy θi ≥ 0
[hlow, hhigh] Allowable range on bandwidth parameter hi,

must satisfy 0 < hlow ≤ hlow <∞

103

uct of the strength of the latin hypercube sampling design and the number of intervals p

selected for each continuous dimension. Another example is the initial space-filling parame-

ter λi, which is defined as θi times the maximum difference in mean response between any

two design sites in the initial LHS design for discrete variable combination i. The values

for hi, i = 1, . . . , imax are determined by the leave-one-out cross-validation method in the

calibration routine, but must be within bounds [hlow, hhigh]. The bounds [hlow, hhigh] are

necessary to prevent overfitting or underfitting the surrogate function to the design sites.

Values of hi that are too small will cause overfitting in the sense that the surface of the

surrogate function will pass through or very close to the response value at each design site

with very sharp drop-offs in between sites; this results from too much weight given to the

nearest design site. Values of hi that are too large will cause underfitting in the sense that

the surface of the surrogate function passes further way from the response value at each de-

sign site with a more gradual slope between sites; this results from too much weight given

to designs sites far from the nearest site. An illustration of underfitting and overfitting was

shown in Figure 4.4.

4.5 Summary

Building on the framework presented in Chapter 3, this chapter added detail regarding

the various algorithm implementations with specific regard to computational concerns. The

use of modern R&S techniques to improve sampling efficiency and use of surrogate functions

to accelerate convergence were highlighted as general approaches to enhance computational

performance of the basic algorithm. Additionally, a strategy for algorithm termination was

proposed which seeks to detect the onset of excessive sampling requirements and avoid addi-

tional sampling if only marginal improvement is expected. In the next chapter, the impact

of the various implementations is assessed in a comprehensive computational evaluation.

104

Chapter 5 - Computational Evaluation

A computational evaluation was conducted to assess the performance of the various

implementation strategies presented in the preceding chapter. This evaluation consisted of a

series of experiments that applied the different algorithm variants to a suite of standardized

test problems. To complement the evaluation, four additional algorithms from the literature

were implemented in order to compare their performance to the MGPS-RS algorithms.

Following an overview of the test scenario in Section 5.1, the competing algorithms, and

their implementation details under this computational study, are presented in Section 5.2.

The test problems used for the evaluation, which consist of twenty-two continuous-variable

and four mixed-variable problems, are described in Section 5.3. In Section 5.4, the design

of experiments is presented which defines the performance measures, outlines the statistical

model to be evaluated, and lists the parameter settings for each of the algorithms. The

numerical results are analyzed in Section 5.5. Special attention is given to a study of the

effects of the various MGPS-RS implementation alternatives, the comparison of MGPS-RS

to its competitors used in this evaluation, and the effectiveness of the termination criteria

proposed in the preceding chapter.

5.1 Test Scenario

To test the algorithm implementations of Chapter 4, the generic response function

F (x) = f(x) +N(0,σ2(f(x))

is used, where N(0,σ2(f(x)) is a normally distributed, mean-zero noise term added to an

underlying true objective function. Standard test functions were drawn from the literature

to compose f(x), some of which are constrained by variable bounds, linear constraints, or

105

both. A total of 26 test problems were defined, four of which contain mixed variables. The

test problems are described in greater detail in Section 5.3 and Appendix A.

To compare two different random noise scenarios, the standard deviation of the noise

term σ(f(x)) is either proportional or inversely proportional to f , but bounded on the

range (0.1, 10):

σ1(f(x)) = min 10, f(x)− f(x∗) + 1 , or

σ2(f(x)) = max 0.1,
1

f(x)− f(x∗) + 1 ,

where f(x∗) is the known optimal solution. These test cases are referred to as noise cases 1

and 2, respectively. At optimality, σ1 = σ2 = 1 but diverge to values σ1 = 10 and σ2 = 0.1

for trial points away from optimality. The noise cases were selected to provide both a high

noise case (case 1) and a low noise case (case 2) and also to demonstrate that the MGPS-

RS algorithms allow for the inclusion of modern R&S procedures that do not require known

and/or constant variance of response samples across different designs.

5.2 Competing Algorithms

Testing was performed for each of the following six MGPS-RS variants:

• MGPS with Rinott’s procedure and no surrogates (MGPS-RIN),
• MGPS with Screen-and-Select procedure and no surrogates (MGPS-SAS),
• MGPS with Sequential Selection with Memory procedure and no surrogates
(MGPS-SSM),

• Surrogate assisted MGPS with Rinott’s procedure (S-MGPS-RIN),
• Surrogate assisted MGPS with Screen-and-Select procedure (S-MGPS-SAS),
and

• Surrogate assisted MGPS with Sequential Selection with Memory procedure (S-
MGPS-SSM).

For comparison to other methods, four additional algorithms were included in computa-

tional experiments:

106

• Finite-Difference Stochastic Approximation (FDSA),
• Simultaneous Perturbation Stochastic Approximation (SPSA),
• Nelder-Mead simplex search (NM), and
• a Random Search (RNDS) algorithm.

Each of the ten methods was coded in the MATLAB
R
programming language. The

MGPS-RS implementations are described in Section 4.4. Code for FDSA and SPSA was

obtained from the web site associated with the textbook of Spall [134] and modified as

necessary. Code for NM was adapted from the MATLAB
R
function fminsearch. Code for

RNDS was written by the author. The details of the algorithms are provided in the following

paragraphs. Due to algorithm limitations, FDSA, SPSA and NM were not applied to the

test problems with mixed variables. In addition, NM was not applied to the constrained

test problems. The RNDS algorithm was adapted for all test problem types.

The FDSA and SPSA methods are based on the algorithm in Figure 2.1 using (2.2)

to estimate the gradient for FDSA and (2.3) for SPSA. As recommended by Spall [134,

p.113], the step sizes for FDSA and SPSA are updated according to

ak =
a

(k + 1 +ASA)αSA
(5.1)

with constant scalar parameters a > 0, αSA > 0, and ASA ≥ 0. The parameter ASA ≥ 0

is designed to provide stability in the early iterations when a is large enough to ensure

nonnegligible step sizes after many iterations.

The perturbation distance parameter ck, used by (2.2) and (2.3) to specify interval

width in the gradient approximation, is updated as per Spall [134, p. 163]

ck =
c

(k + 1)γSA
(5.2)

107

with constant scalar parameters c > 0 and γSA > 0. Spall [134, p. 190] suggests setting

c equal to the approximate standard deviation of the response noise. For nearly all test

problems, the setting c = 1 is used. In the remaining ones, a smaller value was needed to

prevent the formulae in (2.2) and (2.3) from evaluating the objective at infeasible points,

where it is not defined. These test cases are elaborated on further in Section 5.4.

The forms of (5.1) and (5.2) ensure that the iterates of the SA algorithms are asymp-

totically normally distributed about the optimal solution [134, p. 162], which provides a

means to determine rates of convergence. It can be shown that the optimal asymptotic rate

of convergence is achieved for settings of αSA = 1 and γSA = 1/6. However, for better finite-

sample algorithm performance, Spall [134, p. 190] recommends using values αSA = 0.602

and γSA = 0.101, which are the lowest possible settings that satisfy the theoretical condi-

tions necessary to retain normally distributed iterates. These settings are used throughout

the computational testing. For SPSA, the elements of the perturbation direction vector dk

are drawn randomly from a Bernoulli ±1 distribution with probability 1
2 for each outcome.

Each point in the differencing formula is averaged over s0 = 5 response samples for both

FDSA and SPSA.

As suggested by Spall [134, p. 165], ASA is selected to be approximately 10% of the

total number of iterations. Therefore, for RSmax total response samples allowed for each

algorithm run, ASA is determined as

ASA = 0.1
RSmax

2ncs0
for FDSA, and

ASA = 0.1
RSmax

2s0
for SPSA.

Given ASA and an initial desired step size a0, the constant a is selected semiautomatically

after an initial NS number of response samples obtained at the starting point according to

108

the methods suggested in [134, p. 165, 190]. For SPSA, a is determined as

a =
a0 (ASA + 1)

αSA

ĝ0(X0)
,

where ĝ0(X0) is the mean of the estimated gradient vector elements averaged over the NS

responses. For FDSA, a is determined as a = min{atemp,1, atemp,2, . . . , atemp,nc}, where

atemp,i =
a0 (ASA + 1)

αSA

ĝ0,i(X0)

and ĝ0,i(X0) is the estimated gradient vector element for coordinate i averaged over the

NS responses. The value NS = 200 is used for SPSA and NS = max(200, 2ncs0) for

FDSA. A larger number of samples is used for FDSA (for test problems exceeding 20

variables) because FDSA uses more samples per gradient estimate as nc increases, whereas

SPSA always uses 2s0 samples. Given the preceding discussion for determining parameter

settings, the only parameter left that requires tuning for both FDSA and SPSA prior to

algorithm execution is the initial desired step size a0 (except for c in just three of the test

problems).

For problems with variable bounds, elements of infeasible iterates Xk,i, i = 1,nc

produced by FDSA and SPSA are set to li (ui) for lower (upper) bound violations. Handling

the linear constraints is a bit more complicated, however. In these cases, a mapping to

the feasible region was attempted through a sequence of corrective moves in the negative

direction of the outward pointing normal vector to the maximum violated constraint. This

simple technique is illustrated for two dimensions in Figure 5.1, which shows two cases in

which the two constraints f1 and f2 are violated. On the left side of the figure, a single move

is required to map iterate Xk to feasible point Xk. On the right side of the figure, an infinite

number of moves are actually needed to reach the intersection of f1 and f2 in the limit. To

avoid computational deficiencies resulting from a very large number of attempted moves,

109

Xk
Xk′

f1

f2

Xk

Xk′

f1

f2

denotes infeasibility

Figure 5.1. Illustration of Corrective Move Method for Infeasible Iterates Used
in SA Algorithms.

the number of moves is limited to 50 per iteration in algorithm implementation. Thus, in

the presence of multiple linear constraints, the corrected iterates are not guaranteed to be

feasible but will be closer to the feasible region than the pre-correction iterates.

The Nelder-Mead algorithm is based on the algorithm listing in Figure 2.3. As sug-

gested by Barton and Ivey [23], the shrink parameter was adjusted to κ = 0.9 (from 0.5),

while all others were set according to the standard choices [152]: reflection parameter η = 1,

expansion parameter γNM = 2, and contraction parameter β = 1
2 . In addition, the best

point is resampled after a shrink. Any time a point in the simplex is sampled for the first

time or resampled, the objective function value is evaluated as the mean response over

s0 = 5 samples. The initial simplex is constructed using the starting point plus n
c points

a distance of ∆NM units in the direction of the coordinate axes from the starting point.

The parameter ∆NM was tuned for each of the test problems to try and find an initial sim-

plex size that allowed the search to achieve the best results. Details of parameter tuning

procedures are provided in Section 5.4.2.

110

The Random Search algorithm is based on the general algorithm of Figure 2.2, adapted

to a mixed-variable domain. The specific algorithm used in the computational evaluation

is shown in Figure 5.2. The neighborhood structure for the continuous domain is based

on the algorithm in [134, p. 45], which is a simplification of an algorithm in [131]. In

Step 1, the continuous portion of a trial point is generated by perturbing the incumbent

(Xc
k) = Xc

k + bk + dk where bk is a bias vector and dk is a normally distributed random

perturbation vector with mean zero vector and covariance (ρRk)
2I. The parameter ρRk allows

the standard deviation of the perturbation terms, which is set equal for all dimensions, to

be adjusted by iteration. In the algorithm of Figure 5.2, the value is reduced by a factor of

0.99 after each iteration so that, after many iterations, the magnitude of the perturbation

dk gets smaller as the optimum is approached. The initial standard deviation parameter

ρR0 was tuned for each of the test problems to try and find an initial setting that allowed

the search to achieve the best results. Details of parameter tuning procedures are provided

in Section 5.4.2. The bk vector slants the search of a candidate in the direction of previous

success. The discrete portion of a trial point is randomly assigned by selecting a combination

of discrete variable settings i uniformly from all the possible settings and using the values

for Xd that correspond to i.

In Step 2 of the algorithm, the mean responses of the incumbent and trial points are

averaged over k samples. Therefore, precision in estimating the objective function increases

with k so that, early in the search, exploration of the design space is encouraged due to a

greater likelihood of accepting trial points even if the true objective value does not improve

upon the incumbent. As the number of iteration grows, it becomes increasingly difficult to

replace good iterates because of increased precision in the estimates. If the first trial does

not successfully replace the incumbent, then a second is tried by reversing the direction of

111

Random Search Algorithm

Initialization: Set b0 = 0 and initial setting for ρ
R
0 > 0. Choose a feasible starting point X0 ∈ Θ.

Set the iteration counter k to 0.

1. Generate independent random vector dk ∼ NORMAL(0, ρRk I) and independent random integer

i ∼ UNIF (1, imax). Construct trial point Xk = (Xc
k) , (X

d
k) according to following:

— (Xc
k) = X

c
k + bk + dk, and

— (Xd
k) = (X

d)i corresponding to the ith combination of discrete variables.

2. Obtain k response samples {Fs(Xk)}ks=1 for the incumbent design point and calculate mean
response F̄ (Xk) = k

−1 k
s=1 Fs(Xk).

— If Xk is infeasible, set F̄ (Xk) =∞; otherwise,obtain k response samples {Fs(Xk)}ks=1
for the trial design point and calculate mean response F̄ (Xk) = k

−1 k
s=1 Fs(Xk). If

F̄ (Xk) < F̄ (Xk), set Xk+1 = Xk and bk+1 = 0.2bk + 0.4dk and go to Step 3.

— Set (Xc
k) = X

c
k + bk − dk and keep current (Xd

k) . If Xk is infeasible, set F̄ (Xk) =∞;
otherwise, obtain k response samples {Fs(Xk)}ks=1 for the trial design point and
calculate mean response F̄ (Xk) = k

−1 k
s=1 Fs(Xk). If F̄ (Xk) < F̄ (Xk), set Xk+1 =

Xk and bk+1 = bk − 0.4dk and go to Step 3.
— Set Xk+1 = Xk and bk+1 = 0.5bk

3. If the stopping criteria is satisfied, then stop and return Xk+1 as the estimate of the optimal

solution. Otherwise, update ρRk+1 = 0.99ρ
R
k and k = k + 1 and return to Step 1.

Figure 5.2. Random Search Algorithm Used in Computational Evaluation

the perturbation vector dk. If neither trial replaces the incumbent, the bias vector is halved

before returning for another iteration. Note that response samples for infeasible points are

avoided by setting the response mean value to a very large number such that it cannot be

accepted as the new iterate.

5.3 Test Problems

The test problems are drawn from standardized problem sets in [58] and [122]. In

total, twenty-six test problems are used for the computational evaluation — twenty-two of

them with continuous variables only and four of them with mixed variables. The mixed-

variable problems are constructed similarly to the example of Section 3.8 in that f(x) takes

112

a specific functional form depending on the settings of the discrete variables. The following

subsections summarize the test problems.

5.3.1 Continuous-Variable Problems

The continuous-variable test problems are drawn from the published collections in [58]

and [122], the latter being a supplement to the former. Taken together, these books present

a total of 307 problems as “an extensive set of nonlinear programming problems that were

used by other authors in the past to develop, test or compare optimization algorithms”

[122, p. iii]. The collection consists of unconstrained and constrained problems that range

in dimension from two to 100. A nice feature of the publications is that they provide a

classification scheme to help characterize the structure of each problem. The objective

function (OBJ) is classified as one of the following categories:

• constant (C),
• linear (L),
• quadratic (Q),
• sum of squares (S),

• generalized polynomial (P), or
• general nonlinear (G).

The constraint information is classified as one of the following categories:

• unconstrained (U),
• upper and/or lower bounds only (B),
• linear constraint functions (L),
• quadratic constraint functions (Q),
• generalized polynomial constraint functions (P), or
• general nonlinear constraint functions (G).

In this dissertation research, an objective of the test problem set is that it represents a

cross section of the relevant objective function and constraint category combinations. Since

113

the MGPS-RS algorithms are applicable in an unconstrained setting or under bound and

linear constraints, the constraint categories available for testing are U, B, and L. In addi-

tion, very few of the problems with linear objective functions have only linear constraints

(none that are unconstrained or bounded only); therefore, objective function categories are

restricted to Q, S, P, and G. Finally, it is deemed important to stratify algorithm perfor-

mance based on problem size. Therefore, an additional category considered in this research

was established based on problem dimension. The categories are defined as:

• small (S) — 2 to 9 variables,
• medium (M) — 10 to 29 variables, or

• large (L) — 30 to 100 variables.

Note that the “large” category here is not necessarily representative of large practical prob-

lems, which may include thousands of design variables.

With four objective function categories, three constraint type categories, and three

problem size categories, the total number of problem type combinations numbers 4× 3×

3 = 36. Of the thirty-six combinations, twenty-two are satisfied by at least one of the

published problems, which led to the conclusion to select twenty-two continuous-variable

test problems.

A summary of the continuous-variable test problems is displayed in Table 5.1. The

problem number shown is the number assigned in [58] or [122]. The table lists the objective

function type, problem dimension (and size category), and constraint information to include

the number of bounds and/or linear constraints. A more detailed description of the test

problems, included in Appendix A, provides the objective and constraint equations, the

starting solution, and the optimal solution. It should be noted that the published starting

point was used for each problem except for problem 392. In this case, the published starting

114

Table 5.1. Continuous-Variable Test Problem Properties.

Number of

Problem Number of Linear

Number OBJ CON DIM Bounds Constraints

3 Q B 2 (S) 1 0

4 Q B 2 (S) 2 0

5 G B 2 (S) 4 0

25 S B 3 (S) 6 0

36 P L 3 (S) 6 1

105 G L 8 (S) 16 1

110 G B 10 (M) 20 0

118 Q L 15 (M) 30 29

224 Q L 2 (S) 4 4

244 S U 3 (S) 0 0

256 P U 4 (S) 0 0

275 Q U 4 (S) 0 0

281 G U 10 (M) 0 0

287 P U 20 (M) 0 0

288 S U 20 (M) 0 0

289 G U 30 (L) 0 0

297 S U 30 (L) 0 0

300 Q U 20 (M) 0 0

301 Q U 50 (L) 0 0

305 P U 100 (L) 0 0

314 G U 2 (S) 0 0

392 Q L 30 (L) 45 30

point is infeasible. Since MGPS-RS algorithms search the interior of the feasible region,

the starting point was modified from the published version to make it feasible.

5.3.2 Mixed-Variable Problems

The mixed-variable problems are constructed by assigning a specific functional form

to the objective function over the continuous domain f(xc) based on the settings of the

discrete variables xd. To simplify test problem construction, one discrete variable is used

with a varying number of settings imax. For testing, two settings of imax (2 and 3) are used

as well as two settings for the dimension nc (4 and 20) to comprise a total of four test

problem combinations. The following variably dimensioned test functions were selected so

115

that their form could be adjusted to the dimension nc:

f1(x
c) =

nc−1

=1

[(xc+1 − xc)2 + (1− xc)2],

f2(x
c) = 5 + 5(xc)TQxc, where Q(i, j) =

1

i+ j − 1 , and

f3(x
c) = 2 + 20nc − 5

nc

=1

xc.

The first two functions are variations on functions presented in [122]. Function f1

is a version of the well-known Rosenbrock banana function, several versions of which are

presented in [122] (problems 206—210, 294—299). Function f2 is a quadratic function using

the Hilbert matrix to generate the coefficients on the terms; three versions of this function

are presented in [122] (problems 274-276). The scalar multipliers of these functions were

adjusted so that their surfaces do not deviate from each other too much in the feasible

design space (e.g. the scalar “5” was introduced as a multiplier to the (xc)TQxc term). In

addition, a constant term was added to function f1 so that its minimum value does not

coincide with that of f1. Both functions f1 and f2 are used to define the objective function

when imax = 2; the linear function f3 is added when the value of imax is increased from 2

to 3.

The four mixed-variable test problems are summarized in Table 5.2. For each of the

problems, all continuous variables are bound on the range [−4, 4]. The lone discrete variable

xd has either two (MVP1 andMVP3) or three (MVP2 andMVP4) settings, which determine

the form taken by the objective function. For all test problems, the optimal solution

corresponds to x∗ = (xc1, x
c
2, . . . , x

c
nc , x

d)∗ = (0, 0, . . . 0, 1), f(x∗) = 0. The continuous

portion of the starting point was selected as the standard starting point for problems 274-

276 in [122], i.e., xc = −4/ , = 1, . . . , nc. The discrete portion was selected as xd = 2 or

xd = 3. The test problems are shown graphically in Figure 5.3 for a two-dimensional case.

116

Table 5.2. Mixed-variable Test Problems.

Test Bounds Starting

Problem imax Objective function DIM(nc) on xc Point

MVP1 2 f(xc) =
f1(x

c), if xd = 1
f2(x

c), if xd = 2
4 [−4, 4]

xc = 4/ ,
= 1, . . . , 4
xd = 2

MVP2 3 f(xc) =

⎧⎨⎩ f1(x
c), if xd = 1

f2(x
c), if xd = 2

f3(x
c), if xd = 3

4 [−4, 4]
xc = 4/ ,
= 1, . . . , 4
xd = 3

MVP3 2 f(xc) =
f1(xc), if xd = 1
f2(x

c), if xd = 2
20 [−4, 4]

xc = 4/ ,
= 1, . . . , 20
xd = 2

MVP4 3 f(xc) =

⎧⎨⎩ f1(x
c), if xd = 1

f2(xc), if xd = 2
f3(x

c), if xd = 3
20 [−4, 4]

xc = 4/ ,
= 1, . . . , 20
xd = 3

x1

x2

f1

f2

f3

optimal solution
and minimum of f1

minimum of f3

minimum of f2

starting point
(imax = 2)

starting point
(imax = 3)

Figure 5.3. Mixed-variable Test Problem Illustration for nc = 2.

5.4 Experimental Design

The computational experiments constitute a full factorial design, where for each valid

algorithm, test problem, and noise case combination, thirty independent replications were

executed. In each experiment the algorithm was allowed to run until RSmax = 100, 000

117

response samples were obtained (small and medium problems) or until RSmax = 500, 000

response samples were obtained (large problems and problems MVP3 and MVP4).

5.4.1 Performance Measures and Statistical Model

Three performance measures are defined to evaluate the numerical results. Since the

experiments were executed across a number of different PC-based platforms, the perfor-

mance measures do not include computer processing time, which is not always a consistent

indicator of algorithm quality even on a standard platform. The following performance

measures are used, where Q and P are used in the comparison of all algorithms and SW

is used to compare the MGPS-RS variants to each other. In the performance measure de-

finitions, x∗(f∗) refers to the optimal design vector (objective function value), x0(f0) to

the starting design vector (objective function value), and x(f) to the final design vector

(objective function value) after the search.

• Solution quality,
Q =

f − f∗
f0 − f∗ ;

• Proximity to the true optimal:
— Continuous-variable problems,

P =
x− x∗
x0 − x∗ ;

— Mixed-variable problems,

P =
xc − xc∗ +min(1, xd − 1)

xc0 − xc∗ + 1
; and

• Number of cumulative switches, SW , due to the R&S procedure.

The measures Q and P are scaled by dividing by the absolute difference between

the starting and optimal values, thereby providing a dimensionless quantity that allows

consistency in comparisons across test problems. In the mixed-variable case, the measure

P is defined as it is so that if the discrete variable has not reached the optimal setting at

118

termination, the numerator is penalized by one unit regardless of which suboptimal setting

it may have. This is in keeping with the concept that categorical variables have no ordering

so that a setting of “3” should not be perceived as further than “2” from an optimal value

of “1”.

For each experiment involving a MGPS-RS variant, the following statistical model is

postulated for performance measure Q,

Qijk = β0 + βRWRi
+ βSWSj + βNWNk

+ βRSWRi
WSj

+βRNWRi
WNk

+ βSNWSjWNk
+ εijk (5.3)

where 1 ≤ ≤ 30 is the replication index, 1 ≤ k ≤ 2 is the noise case index, 1 ≤ j ≤ 2 is

the surrogate index, 1 ≤ i ≤ 3 is the R&S index, and “coded” independent variables WRi
,

WSj , and WNk
represent experimental design factors for R&S, use of surrogates, and noise

case, respectively. The design factors are defined as

WRi
=

⎧⎨⎩ −1, for i = 1 (RIN),0, for i = 2 (SAS),
+1, for i = 3 (SSM);

WSj =
−1, for j = 1 (no surrogates),
+1, for j = 2 (surrogates);

and

WNk
=

−1, for k = 1 (noise case 1),
+1, for k = 2 (noise case 2).

A similar model is postulated for performance measure P .

5.4.2 Selection of Parameter Settings

To avoid excessive parameter tuning, a subset of parameter settings for all algorithms

are kept constant throughout the experiments. For the SA algorithms and NM, the rec-

ommended settings discussed in Section 5.2 are used when appropriate. Parameter tuning

cannot be completely avoided, however, and those parameters that are adjusted for each

continuous-variable test problem are identified with an entry of “tune” in Table 5.3, which

119

Table 5.3. Parameter Settings for All Algorithms — Continuous-variable Prob-
lems.

Parameter Setting Parameter Setting

MGPS-RS D0 I, −I δ0 100

τ 2 α0 0.8

∆0 tune ρδ 0.95

m−k -1 ρα 0.95

m+k 0 s0 5

p 10 θ 10

strength 2 range tune

[hlow, hhigh] [.1, 3]

FDSA αSA 0.602 c 1(Note 1)

γSA 0.101 s0 5

NS depends on nc ASA depends on nc and RSmax
a0 tune

SPSA αSA 0.602 c 1(Note 2)

γSA 0.101 s0 5

NS 200 ASA depends on RSmax
a0 tune

NM κ 0.9 γNM 2

η 1 β 0.5

∆NM tune s0 5

RNDS ρR0 tune

Note 1: c = .01 (problem 105) and c = .5 (problem 110)

Note 2: c = .25 (problem 25), c = .01 (problem 105) and c = .5 (problem 110)

summarizes the parameter settings for all algorithms. Note that alternative settings for the

FDSA and SPSA parameter c are used for some test problems. Each of the test problems

requiring this change involves evaluating a logarithm in the objective function, and the pa-

rameter modification was necessary to ensure that the gradient estimator does not try to

take the logarithm of a negative number resulting from a larger setting for c.

Parameter tuning for the “tunable” parameters was carried out informally by running

each algorithm for a few thousand response samples and observing the output. Care was

taken to ensure that the SA algorithms did not diverge or seem unstable, as they are prone

to do if a0 is set too large, and that the MGPS-RS variants, RNDS and NM seemed to

120

Table 5.4. Summary of “Tunable” Parameter Settings for all Algorithms — Con-
tinuous-variable Problems.

Problem MGPS-RS FDSA SPSA NM RNDS

Number ∆0 range a0 ASA NS a0 ASA ∆NM ρR0
3 .5 10 .1 500 200 .1 1000 NA 1.0

4 .25 2.5 .1 500 200 .02 1000 NA .5

5 .5 bounds .1 500 200 .02 1000 NA 1.0

25 2.0 bounds .02 333 200 .05 1000 NA 2.5

36 1.0 bounds .05 333 200 .01 1000 NA 2.0

105 .25 bounds .002 125 200 .001 1000 NA 1.0

110 .1 bounds .1 100 200 .03 1000 NA .25

118 4 bounds 2 67 200 .25 1000 NA 4

224 .5 bounds .5 500 200 .5 1000 NA .5

244 2 5 .1 833 200 .1 1000 8 1.5

256 1 5 1 250 200 .05 1000 8 .5

275 1 2.5 .25 250 200 .25 1000 2 1

281 .5 2.5 .1 100 200 .02 1000 8 .5

287 1 4 2.5 50 200 1 1000 2 .5

288 1 4 1 50 200 .5 1000 1 .5

289 .1 2 .001 167 300 .01 5000 2 .1

297 2 2.5 2 167 300 .3 5000 10 1

300 .1 1 .05 50 200 .05 1000 500 .5

301 2 10 .01 100 500 .008 5000 500 .25

305 2 5 .3 50 1000 .05 5000 2 2

314 .25 1 .3 500 200 .05 1000 10 .1

392 10 bounds 10 167 300 1 5000 NA 10

achieve reasonable progress. The final settings for these parameters for each algorithm and

test problem are displayed in Table 5.4.

For the mixed-variable test problems, the parameter settings used for the MGPS-RS

variants and RNDS in all experiments are displayed in Table 5.5. Two items regarding these

settings are worthy of mention. First, the extended poll trigger ξk is set to a large value

during the early iterations and then reset to a smaller value after the algorithm conducts

two steps. This ensures extended polling is conducted so that samples

are generated at alternate settings of xd if the original surrogates do not, due to surrogate

inaccuracies, correctly predict improving designs during the step at the alternate

xd settings (which would avoid such sampling). Secondly, the R&S decay parameters ρδ and

121

Table 5.5. Parameter Settings for MGPS-RS and RNDS Algorithms —
Mixed-variable Problems.

Parameter Setting Parameter Setting

MGPS-RS D0 I, −I δ0 100

τ 2 α0 0.8

∆0 .5 ρδ, ρα (MVP1,2) 0.95

m−k -1 ρδ, ρα (MVP3,4) 0.99

m+k 0 s0 5

ξk (MVP1,2) 200 (10)Note θi 10

ξk (MVP3,4) 2000 (20)Note range bounds

strength 2 p 10

[hlow, hhigh] [.1, 3]
RNDS ρR0 2

Note: The notation X(x) indicates that ξk is initially set to X but reset to x after

two steps are executed.

ρα are set to a higher value (0.99) for the larger problems (MVP3 and MVP4). This ensures

that the parameters αr and δr decay at a slower rate with the hope that the algorithm will

not exhaust an excessive portion of the response sampling budget prematurely through a

sequence of R&S procedures conducted during the steps.

5.5 Results and Analysis

The computational experiments were run on a total of 26 different PC workstations.

The computational platforms ranged in processing speed from 2.00 GHz to 3.00 GHz, in

random access memory from 256 MB to 2.0 GB, and operated under the Windows 2000 or

Windows XP operating systems. Three of the platforms had dual processors.

The following sections summarize the quantitative analysis of the results. Additional

test result data are presented in various forms in Appendix B. For example, to give a visual

perspective of algorithm progression, a series of graphs are displayed that plot performance

measure Q, averaged over 30 replications, versus the number of response samples obtained

for each algorithm, noise case, and test problem.

122

5.5.1 Analysis of MGPS-RS Variant Implementations

To evaluate the effect of the various implementation options on performance mea-

sures Q and P within MGPS-RS, a formal analysis of variance (ANOVA) was performed

on the statistical model (5.3) using the JMP
TM

5.1 statistical software [121]. To assess

the validity of the model, the estimated studentized residuals were examined using normal

probability plots and the Shapiro-Wilk test for normality [116, 125]. In most cases, the

data Qijk and Pijk required a transformation to approximately satisfy the normality and

constant variance assumptions required by the ANOVA procedure. The commonly used

transformations suggested in Montgomery [93, p. 84] were used, which include the square

root, natural logarithm, reciprocal square root, and reciprocal transformations. Even af-

ter transformation, the Shapiro-Wilk test frequently rejected the null hypothesis that the

residuals were normally distributed at the .05 significance level, perhaps because the trans-

formed residual distributions remained slightly skewed and there was a large sample size

(360 residuals — one from each combination of 6 algorithms, 30 replications, and 2 noise

cases). For a large number of sample points, the cumulative deviation from normality, used

in computing the test statistic, can be more dramatic than for smaller samples, causing the

test to fail. Furthermore, it proved difficult to attain approximately constant variance of

the residuals, which was assessed graphically by plotting the residuals versus fitted values.

The ANOVA procedure is typically robust to moderate departures from normality in the

residuals (see Montgomery [93, p. 77]), and since the sample size is large and balanced

(equal samples for each of the factors WR, WS , and WN), then the normality and constant

variance assumptions may be approximately satisfied. Included in Appendix B is a listing

of transformations used, the results of the Shapiro-Wilk test, normal probability plots and

residual versus fitted values plots for each test problem.

123

The ANOVA procedure was used to determine the significance of the effects βR, βS ,

βN , βRS , βRN , and βSN in model (5.3). To investigate which R&S procedures led to better

results in the event that βR was significant, the ANOVA was followed up by a multiple

comparison test at the .05 significance level on the transformed data to compare means

T̄ (Q1), T̄ (Q2), and T̄ (Q3), where T̄ (Qi) is defined as

T̄ (Qi) =
1

120

2

j=1

2

k=1

30

=1

T (Qijk), i = 1, 2, or 3, (5.4)

and T (·) denotes the transformation (the same test was used for T̄ (Pi), i = 1, 2, 3, where

T̄ (Pi) is as defined in (5.4)). The multiple comparison test employed the Tukey honestly

significant difference (HSD) procedure (see Sheskin [126, p. 534]) that makes all possible

pairwise comparisons and tests for significant differences among the means, grouping them

accordingly. Mean performance measures assigned to the same group are not statistically

different from each other under this test.

As a safety precaution in the event of violated model assumptions, a battery of non-

parametric statistical procedures was also used to test for differences among the factor

populations. In particular, the following methods were used:

• the Wilcoxon rank-sum test [126, p. 289] for two factor levels (WS and WN) or

the Kruskal-Wallis one-way ANOVA [126, p. 597] for three factor levels (WR),

• the two-sample median test [71, p. 304] for two factor levels (WS and WN) or

the Brown-Mood k-sample test [71, p. 315] for three factor levels (WR), and

• the van der Waerden test [126, p. 611] for any number of factor levels (WS ,

WN , and WR).

The Wilcoxon rank-sum procedure tests the hypothesis that the median of two sample

populations are different. The Kruskal-Wallis procedure can be considered an extension

of the Wilcoxon procedure that tests whether at least two of k sample populations have

different median values. The two-sample median procedure tests whether two populations

124

have the same cumulative density function (c.d.f.) by categorizing each sample from both

populations according to whether or not it is above or below the composite median value

and counting the instances of each category. The Brown-Mood procedure extends this to k

sample populations and tests whether at least two of the populations have a different c.d.f.

The van der Waerden procedure also tests whether at least two of k sample populations

come from different distributions. This procedures organizes the data into a set of rank-

orders, then transforms the rank-orders into a set of normal scores (z scores) from a standard

normal distribution. If the average of the normal scores of all populations are not equal at

a prescribed significance level, then the null hypothesis that the populations derive from

the same c.d.f. is rejected.

The results of the significance tests on the main effects βR, βS , and βN are displayed in

Tables 5.6 (continuous-variable problems) and 5.7 (mixed-variable problems). In the figures,

the absence of any entry indicates that the effect corresponding to effect of that column

tested as insignificant for that test problem. For example, the effect βR was insignificant

for performance measure P on test problem 3 so the choice of R&S procedure had no effect

toward proximity to the true optimal solution at termination. For effect βS , an entry “+”

indicates that employing surrogates had a positive effect (indicating improvement) toward

the performance measure where an entry “—” indicates a negative effect. Similarly, for effect

βN , an entry “+” indicates that going from noise case 1 to 2 had a positive effect toward

the performance measure where an entry “—” indicates a negative effect. For effect βR, the

entry indicates the results of the Tukey HSD multiple comparison test where the groups

are listed in descending order of performance measure quality in terms of the transformed

data. For example, in test problem 3, using Rinott’s procedure resulted in a better and

statistically different mean T̄ (Q1) than using SSM (T̄ (Q3)), but T̄ (Q2) (SAS) was not

125

Table 5.6. Significance Tests of Main Effects for Performance Measures Q and P
— Continuous-variable Test Problems .

Test Q P

Problem βR βS βN βR βS βN

3
1—SAS, RIN

2—SAS, SSM
+ + —

4 + + + +

5 + + +

25 + — + +

36
1—RIN, SSM

2—RIN, SAS
(∗) + + + (∗) +

105 + + + +

110 + +

118 + + + +

224 + +

244 + + + + (∗)
256

1—SAS, SSM

2—SAS, RIN
+ + + (∗) +

275 +

281
1—SAS, SSM

2—SAS, RIN
+ +

1—SSM

2—SAS, RIN
+

287
1—RIN

2—SAS, SSM
(∗) + +

1—SAS, RIN

2—SAS, SSM
(∗) + +

288

1—SSM

2—RIN

3—SAS

— +

1—SSM

2—RIN

3—SAS

— (∗) +

289
1—SSM, SAS

2—SSM, RIN
(∗) —

1—SSM, SAS

2—SSM, RIN
(∗) —

297
1—SSM, RIN

2—SAS
— +

1—SSM

2—RIN

3—SAS

+

300
1—SSM, SAS

2—RIN
(∗) + + + +

301

1—SSM

2—RIN

3—SAS
+ (∗) +

1—SSM, RIN

2—SAS
+

305

1—SSM

2—RIN

3—SAS

+ (∗) +
1—SSM

2—SAS, RIN
+ (∗) +

314
1—RIN, SAS

2—RIN, SSM
+ (∗) + (∗) +

392 — + (∗) — +

126

Table 5.7. Significance Tests of Main Effects for Performance Measures Q and P
— Mixed-variable Test Problems.

Test Q P

Problem βR βS βN βR βS βN

MVP1
1—SSM

2—SAS, RIN
+

1—SSM, RIN

2—SAS, RIN
(∗) +

MVP2
1—SSM

2—SAS, RIN
(∗) +

1—SSM

2—SAS, RIN
+

MVP3
1—SSM

2—SAS, RIN
+

1—SSM

2—SAS, RIN
+

MVP4
1—SSM

2—SAS, RIN
+ (∗) +

1—SSM

2—SAS, RIN
(∗) +

statistically different from T̄ (Q1) or T̄ (Q3). Finally, an entry (or nonentry) accompanied

by a symbol “(∗)” indicates that at least two of the three nonparametric procedures were

in disagreement with the ANOVA and/or multiple comparison results. For example, in test

problem 36, all three nonparametric tests actually failed to be significant; the Kruskal-Wallis

test did not detect a difference between any of the medians of the observation populations

Q1jk , Q2jk , or Q3jk (1 ≤ j ≤ 2, 1 ≤ k ≤ 2, 1 ≤ ≤ 30) nor did the Brown-Mood or

van der Waerden test detect a difference in the distributions from which those data were

drawn. More detailed results of the nonparametric tests are included in Appendix B.

The results indicate a strong agreement between the ANOVA/multiple comparison

tests and the nonparametric tests. Of the 180 possible tests for significance of main effects,

only 20 are contradicted by at least two nonparametric tests, which provides some validation

that the ANOVA results may be justified. Most of the disagreements occur with respect to

the effect of the R&S procedure and the use of surrogates, typically refuting the possible

effects predicted by the ANOVA procedure.

Not surprisingly, the results show that better results are almost always achieved in

noise case 2 (low noise) than in noise case 1 (high noise), having a positive effect on Q

and P in 24 and 23, respectively, of the 26 problems using the ANOVA results. This

127

demonstrates the adverse effects that high response noise can have on solution quality over

a fixed budget of response samples.

An encouraging finding is that, for 16 of 26 problems (better than 60%), the use of

surrogates had a positive effect on solution quality Q at termination using the ANOVA

results. It is interesting to note that in four of the problems, the use of surrogates actually

had a negative effect on Q. This occurred for some of the larger problems (one with nc = 20

and three with nc = 30) and may be due to the fact that the number of design sites used

to build the original surrogate was not increased as the size of the problem increased. As a

result, the surrogate functions for the larger problems may have suffered from larger relative

inaccuracies that caused the algorithm to search unpromising regions of the design space

in vain. The effect of surrogate use on P is similar to that of Q but not as pronounced; in

ten instances the use of surrogates had a positive effect (each corresponding to one of the

16 positive effect instances for Q) and in four instances had a negative effect (three of them

corresponding to the four instances for Q). For problem 3, the use of surrogates actually

positively affected Q but negatively affected P .

Similar observations can be made regarding the use of the various R&S procedures. For

performance measure Q, sixteen of the 26 problems showed significant effects for parameter

βR. The multiple comparison tests revealed that procedure SSM was in the lead group

(delivering the smallest mean T̄ (Qi)) on thirteen occasions, where SAS and RIN were in

the lead group on six and five occasions, respectively. In the case of measure P , effect βR

was significant eleven times and SSM, SAS, and RIN were in the lead group on ten, two,

and three occasions, respectively. These results seem to indicate an advantage of using the

SSM procedure over the range of test problems, but it is interesting to note that RIN is not

always dominated by either SSM or SAS when βR is significant. Perhaps the conditions

128

under which the more modern procedures SSM and SAS perform well (heterogeneity of true

objective function values among the candidate set) do not occur as frequently as expected,

at least for the test problems and noise structure considered in this research. On the other

hand, it should be mentioned that the choice of R&S procedure shows an effect with greater

frequency for the large problems than for the small and medium problems. Furthermore,

Rinott’s procedure is in the lead group for the large problems on only one occasion for

Q (shared with SSM) and never for P . This suggests that choice of the R&S procedure

becomes more critical as problem dimension grows.

Tables 5.6 and 5.7 do not make reference to the interaction terms βRS , βRN , and βSN

in model (5.3). For the most part, these terms failed to be significant. Term βSN was

significant in thirteen problems for measure Q and nine problems for measure P . Each of

the terms βRS and βRN was significant in either five or six problems for both measures.

Furthermore, no systematic trend exists for the cases that tested significant. For example,

the term βSN had a positive effect on Q in seven cases and a negative effect in six cases.

The terminal values for Q and P , averaged over 60 replications (30 for each noise case)

for each of the six MGPS-RS variants are presented in Tables 5.8 and 5.9, respectively. In

each table, the best result of the six algorithms is enclosed by a rectangle. However, it should

be noted, as indicated in the preceding statistical analysis, that the best is not necessarily

statistically significant. From Table 5.8, it can be seen that for 18 of 26 problems, the

average objective function value of the best result at termination has progressed to within

10% of the difference between the starting and optimal solutions. Table 5.9 illustrates

that most average terminal values of P have improved from their original value of 1.0,

indicating that the terminal design has moved closer to the optimal solution — an obvious

129

Table 5.8. Terminal Value for Performance Measure Q Averaged over 60 Repli-
cations (30 for each noise case) — MGPS-RS Algorithms.

Test S-MGPS- S-MGPS- S-MGPS- MGPS- MGPS- MGPS-

Problem RIN SSM SAS RIN SSM SAS

3 0.01308 0.02231 0.02333 0.15040 0.23041 0.26814

4 0.11604 0.06449 0.09656 0.42984 0.38489 0.37994

5 0.06853 0.06905 0.12139 0.13667 0.08224 0.13039

25 0.06845 0.07656 0.08417 0.10561 0.10226 0.10697

36 9.184e-5 6.877e-5 9.888e-5 14.64e-5 12.78e-5 13.92e-5

105 0.12228 0.10386 0.12043 0.40080 0.39563 0.40299

110 0.60609 0.57289 0.65849 0.57437 0.60648 0.61715

118 0.07445 0.07561 0.06792 0.09377 0.06721 0.08202

224 0.00163 0.00178 0.00182 0.00276 0.00211 0.00178

244 0.38432 0.37756 0.60000 0.37394 0.43310 0.36920

256 0.00096 0.00050 0.00069 0.00129 0.00127 0.00128

275 0.00532 0.00552 0.00563 0.00550 0.00564 0.00745

281 0.21216 0.14964 0.20407 0.28558 0.22912 0.25370

287 5.662e-4 6.751e-4 7.043e-4 4.223e-4 4.166e-4 4.271e-4

288 0.00233 0.00398 0.00396 0.00126 0.00036 0.00142

289 1.20395 1.19910 1.17340 1.00405 1.00118 1.00119

297 3.510e-4 8.168e-4 18.42e-4 1.463e-4 0.570e-4 9.565e-4

300 0.94788 0.92655 0.91767 0.98916 0.97512 0.97711

301 0.96703 0.93819 1.00422 0.98656 0.94338 1.01613

305 5.032e-9 4.910e-9 5.126e-9 5.071e-9 4.939e-9 5.202e-9

314 0.03267 0.03073 0.02279 0.03343 0.03318 0.03038

392 0.59389 0.58836 0.59115 0.50274 0.48743 0.48711

MVP1 0.00338 0.00228 0.00344 0.00271 0.00140 0.00238

MVP2 0.00533 0.00309 0.00316 0.00316 0.00237 0.00431

MVP3 0.01481 0.00866 0.01270 0.01315 0.00938 0.01224

MVP4 0.00713 0.00497 0.00640 0.00613 0.00612 0.00681

sign of convergence. In 24 of 26 cases for Q, and 22 of 26 cases for P , the best solution is

produced by an algorithm that uses surrogates, the SSM procedure, or both.

Tables 5.8 and 5.9 also reflect the poor performance of the algorithms for some of

the more difficult problems. In particular, problems 300 and 301 are both instances of a

gradually sloping quadratic with n − 1 cross terms so that the function contours are not

130

Table 5.9. Terminal Value for Performance Measure P Averaged over 60 Repli-
cations (30 for each noise case) — MGPS-RS Algorithms.

Test S-MGPS- S-MGPS- S-MGPS- MGPS- MGPS- MGPS-

Problem RIN SSM SAS RIN SSM SAS

3 1.39540 1.53845 1.45450 0.97642 0.98390 0.98830

4 0.43096 0.23574 0.35860 0.97671 0.85905 0.72920

5 0.23016 0.27609 0.38620 0.31260 0.22689 0.29629

25 0.60901 0.69032 0.62041 0.88297 0.87873 0.90482

36 2.771e-4 2.353e-4 2.941e-4 3.211e-4 2.804e-4 3.137e-4

105 0.62117 0.61531 0.66029 0.93319 0.93494 0.93786

110 0.72689 0.68316 0.76373 0.70208 0.72930 0.74529

118 0.54801 0.57414 0.53927 0.58954 0.56467 0.60107

224 0.05014 0.06133 0.05241 0.06558 0.06494 0.05306

244 0.45466 0.39325 0.48229 0.67024 0.69413 0.63578

256 0.10871 0.09211 0.09291 0.12091 0.11032 0.10830

275 0.43201 0.49222 0.47172 0.46632 0.44355 0.42695

281 0.50573 0.37075 0.48541 0.39984 0.35480 0.41369

287 0.36035 0.38910 0.38330 0.44449 0.44574 0.44300

288 0.12594 0.13047 0.16748 0.11530 0.07931 0.11538

289 1.24475 1.23490 1.20105 1.00400 1.00132 1.00130

297 0.02478 0.02168 0.03921 0.03703 0.02244 0.04170

300 0.96132 0.96618 0.96129 0.99533 0.99445 0.99533

301 0.99200 0.99152 0.99476 0.99179 0.99098 0.99400

305 4.51285 4.46560 4.52590 4.52985 4.47735 4.54240

314 0.38761 0.41910 0.33489 0.41407 0.43805 0.39969

392 0.96754 0.95826 0.96644 0.87721 0.86539 0.86532

MVP1 0.10853 0.09774 0.09847 0.09504 0.07842 0.09871

MVP2 0.13581 0.10122 0.09606 0.09820 0.11828 0.11486

MVP3 0.43704 0.31779 0.38668 0.34565 0.25619 0.32271

MVP4 0.46690 0.30877 0.39041 0.28361 0.36255 0.37638

along the coordinate axes. This is a hindrance in these experiments because the search

directions are set to the axes.

Problem 289 is also a challenging problem with a general nonlinear objective function

for which the starting value and optimal value differ only by 0.6963. Hence, the noise has

a greater influence for this problem, even in the low noise case, because the noise observed

at different candidate designs can dominate the magnitude of the true objective function

131

value difference between those designs. It is also of larger dimension (n = 30) than most of

the problems. On a smaller scale, problem 244 also presented difficulties for the algorithms.

This three-dimensional problem is similar to problem 289 in that the difference between

starting and optimal objective function values is small (1.5988); as a result, the best of the

MGPS-RS algorithms could only achieve about a 63% reduction in performance measure Q.

From the results of this section, it appears that enough evidence exists to claim that

procedure SSM offers performance advantages over the other R&S procedures. However,

Table 5.10. Number of Switches SW at Termination Averaged over 60 Replica-
tions (30 for each noise case) — MGPS-RS Algorithms.

Test S-MGPS- S-MGPS- MGPS- MGPS-

Problem SSM SAS SSM SAS

3 80,963 155 90,254 222

4 77,202 134 89,675 223

5 80,110 139 90,498 221

25 80,150 219 89,132 292

36 83,714 287 89,718 288

105 83,697 394 88,439 448

110 74,632 365 85,434 666

118 77,749 459 83,910 686

224 90,375 222 90,329 223

244 84,123 226 89,533 292

256 79,485 200 90,017 355

275 89,908 354 87,496 355

281 78,739 421 84,577 672

287 77,695 746 76,441 951

288 60,006 419 79,742 1,012

289 377,400 1,713 405,585 2,144

297 380,265 1,265 408,045 2,061

300 77,073 973 79,512 1,056

301 369,585 2,742 391,645 3,354

305 342,265 2,596 370,750 3,811

314 77,775 141 89,842 224

392 362,100 150 250,635 69

MVP1 87,315 320 87,002 336

MVP2 37,239 142 62,727 237

MVP3 353,845 4,945 416,210 5,126

MVP4 234,737 3,331 284,115 4,156

132

as discussed in Section 4.1, this discussion is not complete without evaluating the number

of switches SW required by the algorithms. Table 5.10 presents the number of cumula-

tive switches required, averaged over 60 replications (30 for each noise case) for the algo-

rithm variants using the SSM and SAS procedures (recall that Rinott’s procedure incurs no

switching). The table shows that switching for the fully sequential SSM procedure can be

quite significant, requiring more switches than SAS by approximately two orders of mag-

nitude on each of the test problems. If used to optimize a real-world system by evaluating

a simulation model, this cost must be taken into account before deciding which algorithm

variant to use. If the switching cost is negligible relative to the cost of simulation execution,

it should not have much impact. However, as Hong and Nelson [59] suggest, switching cost

can sometimes exceed sampling costs by orders of magnitude, which could make the use of

SSM within MGPS-RS computationally prohibitive.

5.5.2 Comparative Analysis of All Algorithm Implementations

In this subsection, the analysis of the results is extended to the comparison of MGPS-

RS with the competing algorithm implementations presented in Section 5.2. The terminal

values for Q and P , averaged over 60 replications (30 for each noise case) for each of the

four competing algorithms are presented Tables 5.11 and 5.12, which also includes the best

result of the MGPS-RS variants. The appropriate MGPS-RS algorithm is listed where,

for convenience, the algorithm name is shortened to, for example, S-RIN for “surrogate

assisted MGPS with Rinott’s procedure” or RIN for “MGPS with Rinott’s procedure and no

surrogates”. In each table, the result that delivered the best average performance measure

is enclosed by a rectangle.

The results indicate that, for the continuous-variable problems, the best results are

distributed primarily among the two SA procedures. Of the 22 continuous-variable prob-

133

Table 5.11. Terminal Value for Performance Measure Q Averaged over 60 Repli-
cations (30 for each noise case) — FDSA, SPSA, RNDS, NM, and Best
MGPS-RS Algorithms.

Test Best of

Problem MGPS-RS FDSA SPSA RNDS NM

3 S-RIN 0.01308 0.00187 0.00563 0.04866 —

4 S-SSM 0.06449 0.00018 0.00451 0.15692 —

5 S-RIN 0.06853 0.00071 0.00098 0.03466 —

25 S-RIN 0.06845 0.09150 0.50503 0.03091 —

36 S-SSM 0.069e-3 1.260e-3 0.421e-4 7.028e-3 —

105 S-SSM 0.10386 0.77604 0.69540 0.61353 —

110 S-SSM 0.57289 0.04767 0.02233 0.12655 —

118 SSM 0.06721 0.00245 Note 1 0.00840 Note 2 0.32007 —

224 S-RIN 1.628e-3 0.030e-3 0.023e-3 1.101e-3 —

244 SAS 0.36920 0.00987 0.00863 0.05213 0.50936

256 S-SSM 4.953e-4 0.042e-4 16.09e-4 3.347e-4 15.89e-4

275 S-RIN 5.322e-3 0.049e-3 0.113e-3 3.286e-3 3.307e-3

281 S-SSM 0.14964 0.06015 0.09278 0.21383 0.18178

287 SSM 4.166e-4 18.18e-4 4.784e-4 12.38e-4 5.475e-4

288 SSM 3.639e-4 9.443e-4 0.131e-4 239.7e-4 211.3e-4

289 SSM 1.00118 0.99157 0.10228 1.08630 0.99534

297 SSM 0.057e-3 4.024e-3 5.075e-3 6.357e-3 10.13e-3

300 S-SAS 0.91767 0.80106 0.04990 0.91633 0.39490

301 S-SSM 0.93819 0.95923 0.56652 1.08404 0.76375

305 S-SSM 49.10e-10 2.868e-10 4.113e-10 3988.e-10 16.61e-10

314 S-SAS 0.02279 0.00026 0.00013 0.00958 0.01749

392 SSM 0.48743 0.00768 Note 3 0.00817 Note 4 0.85567 —

MVP1 SSM 0.00140 — — 0.00614 —

MVP2 SSM 0.00237 — — 0.01333 —

MVP3 S-SSM 0.00866 — — 0.02184 —

MVP4 S-SSM 0.00497 — — 0.01110 —

Note 1: 45 of 60 terminal solutions were infeasible with average maximum constraint violation

(MCV) of .00226, maximum MCV of 0.02020.

Note 2: 3 of 60 were infeasible with average MCV of .00024, maximum MCV of 0.00032.

Note 3: All 60 were infeasible with average MCV of .02717, maximum MCV of 0.044054.

Note 4: 2 of 60 were infeasible with average MCV of .00315, maximum MCV of 0.00600.

lems, one of these methods claimed the best average performance for each measure Q and

P in 17 cases. The FDSA implementation tended to perform better in low dimensions

(problems 3, 4, 5, 256, and 275) where SPSA performed better in larger dimensions (prob-

134

lems 288, 289, 300, and 301). This is a tribute to SPSA’s efficient technique for estimating

the gradient, for which response samples are required at only two design points regardless

of problem dimension. The results obtained by SPSA on problems 289, 300, and 301 are

fairly remarkable considering the poor performance of the remaining methods, although

the Nelder-Mead method enjoyed limited success for quadratic problems 300 and 301.

Although the SA algorithm implementations appear to have superior performance for

this group of continuous-variable test problems, MGPS-RS was able to obtain the best av-

erage performance on four occasions for each performance measure. This is partly due to

the fact that MGPS-RS searches entirely within the feasible region for constrained prob-

lems. This was a benefit for problems 25 and 105 because the objective function for these

problems can evaluate to a complex number for certain points outside the feasible region.

In the MGPS-RS case, infeasible points are easily handled by assigning an arbitrarily large

objective function value without sampling. For the SA algorithms, however, the rules gov-

erning the perturbation parameter ck require this parameter to be set relatively large in

early iterations (recommended equal to one standard deviation of response sample noise)

so that it can gradually decay to zero. If there are restrictive bounds on some variables (as

in problem 105) and if infeasible points cannot be evaluated, this leads to a smaller initial

setting for ck. This has a negative impact an gradient accuracy which, to retain stability,

necessitates a smaller setting for the initial step size, and therefore slows the convergence

since the step size also decays with k.

Another disadvantage of the SA algorithms for constrained problems, as implemented

in this research, is that the simple method for correcting infeasible designs suggested in

Section 5.2 was unable to avoid infeasibilities for two of the linearly constrained problems

(118 and 392). For each replication, the maximum constraint violation (MCV) at termi-

135

Table 5.12. Terminal Value for Performance Measure P Averaged over 60 Repli-
cations (30 for each noise case) — FDSA, SPSA, RNDS, NM, and Best
MGPS-RS Algorithms.

Test Best of

Problem MGPS-RS FDSA SPSA RNDS NM

3 RIN 0.97642 0.97415 0.94414 1.06560 —

4 S-SSM 0.23574 0.00067 0.01677 0.39224 —

5 SSM 0.22689 0.02264 0.03144 0.15162 —

25 S-RIN 0.60901 0.99261 0.90349 0.86439 —

36 S-SSM 0.00024 0.00384 0.00119 0.01972 —

105 S-SSM 0.61531 0.99959 0.99666 0.98841 —

110 S-SSM 0.68316 0.18265 0.12051 0.28626 —

118 S-SAS 0.53927 0.26615 Note 1 0.21932 Note 2 0.73118 —

224 S-RIN 0.05014 0.00438 0.00258 0.05936 —

244 S-SSM 0.39325 0.09379 0.08616 0.29376 0.61167

256 S-SSM 0.09211 0.00268 0.17929 0.08571 0.15597

275 SAS 0.42695 0.07361 0.19038 1.25040 0.42242

281 SSM 0.35480 0.03045 0.25663 0.90201 0.63811

287 S-RIN 0.36035 0.28593 0.33258 0.43073 0.39466

288 SSM 0.07931 0.15083 0.00632 0.57399 0.59733

289 SSM 1.00132 0.99194 0.24715 1.09515 0.99590

297 S-SSM 0.02168 0.63818 0.08092 0.62075 0.52845

300 S-SAS 0.96129 0.94894 0.18877 0.96570 0.39665

301 SSM 0.99098 0.99689 0.81008 0.99746 0.73491

305 S-SSM 4.46560 0.47072 1.26915 39.0515 2.59755

314 S-SAS 0.33489 0.03300 0.02249 0.22037 0.30277

392 SSM 0.86539 0.26997 Note 3 0.15424 Note 4 0.98951 —

MVP1 SSM 0.07842 — — 0.17562 —

MVP2 S-SAS 0.09606 — — 0.21823 —

MVP3 SSM 0.25619 — — 1.16450 —

MVP4 RIN 0.28361 — — 1.05580 —

Note 1: 45 of 60 terminal solutions were infeasible with average maximum constraint violation

(MCV) of .00226, maximum MCV of 0.02020.

Note 2: 3 of 60 were infeasible with average MCV of .00024, maximum MCV of 0.00032.

Note 3: All 60 were infeasible with average MCV of .02717, maximum MCV of 0.044054.

Note 4: 2 of 60 were infeasible with average MCV of .00315, maximum MCV of 0.00600.

nation was recorded, and the average and maximum MCV (over the 60 replications) are

annotated in Tables 5.11 and 5.12. An advantage of MGPS-RS algorithms in the presence

136

of linear constraints is that the direction set can be easily updated to incorporate conform-

ing directions, so long as the constraints are not degenerate.

Even though MGPS-RS has some built-in advantages for some of the constrained

problems, it is also able to generate competitive results for some of the larger, unconstrained

problems (287, 297, and 305). The RNDS and NM methods developed for this research

cannot make this claim in general. Each of these methods is outperformed by one of the

other methods in every case but one. In problem 25, RNDS generates the best average

result for Q and in problem 301, NM generates the best average result for P . Algorithm

NM also is at a disadvantage because it cannot be applied unmodified to the constrained

problems.

For each of the mixed-variable problems, MGPS-RS outperformed RNDS on both

performance measures. This is not surprising since the same conclusion also generally held

for the continuous-variable problems.

5.5.3 Termination Criteria Analysis

To complete the analysis of the results, the termination criteria proposed in Section

4.3 are evaluated in this subsection. To facilitate the analysis, various output data were

generated in addition to the performance measures described in Section 5.4. At various

stages of algorithm execution, the following data were saved to the output file:

• standard deviation of the incumbent design response Sinc after the initial stage
of s0 samples,

• indifference zone parameter value δ,
• significance level parameter value α,
• step length parameter value ∆,
• number of iterations completed, and
• number of response samples RS obtained.

137

Using (4.7) as a guide to predict when the per-iteration sampling requirements might

grow rapidly, the analysis was conducted by finding the first point during algorithm pro-

gression at which the ratio Sinc
δ
exceeded unity (using K = 1 in (4.7)). The iteration at

which this occurred, denoted as k , was recorded, as were the values ∆k , αk , the percent

reduction in Q, and the number of response samples RS accumulated. Also computed for

the analysis was the percent reduction in Q from iteration k until termination at iteration

kt, as well as the number of additional iterations completed and response samples obtained

before termination.

Using algorithm S-MGPS-RIN as a case study for the analysis, the average of these

quantities over 30 replications are displayed in Table 5.13 for noise case 1 and Table 5.14

for noise case 2. In the tables, the averages for percent reduction in Q (%Q), number of

iterations (Iter.), and response samples (RS) are shown twice: first for the period from

initialization to iteration k (k ≤ k), then for the period from k to termination (k < k ≤

kt). Also listed in the tables is a notional setting for the step length termination scalar ∆T

(4.9), set to the fraction 1
100 of the initial step length ∆0.

In each table, the test problems marked with an asterisk indicate those that would have

satisfied the termination criteria at iteration k if the threshold setting for the significance

level (4.8) were set to 0.01. For noise case 1, this occurred five times and for noise case

2, eight times. In ten of these 13 cases, excellent progress was made toward the optimal

objective function value (97% or higher reduction in Q). Even more telling is that in all

cases, very little progress was made from k until termination while using significantly more

samples over fewer iterations. This is, in fact, true for nearly all of the problems which is

an indicator that Sinc
δ
may be a useful means for selecting a stopping point.

138

Table 5.13. Termination Criteria Analysis for S-MGPS-RIN — Noise Case 1.

Test k ≤ k k < k ≤ kt
Problem ∆T ∆k αk %Q Iter. RS %Q Iter. RS

3 .0050 .0060 .0071 99.24 64.3 2,570 0.13 22.3 97,430

* 4 .0025 1.10e-4 .0065 78.82 69.2 2,889 0.72 23.0 97,111

* 5 .0050 .0012 .0075 87.75 62.1 3,464 1.29 18.9 96,536

25 .0200 .0474 .0112 94.37 55.0 3,887 0.43 19.5 96,113

* 36 .0100 2.04e-5 .0092 99.99 75.3 5,111 0.00 26.1 94,889

105 .0025 .0865 .0415 82.73 40.9 5.860 0.89 20.5 94,140

110 .0010 .0389 .0152 5.47 39.8 11,556 8.76 10.0 88,444

118 .0400 .7401 .0385 86.84 44.1 9,110 1.78 16.8 90,890

* 224 .0050 4.28e-5 .0089 99.75 87.1 4,481 0.00 27.3 95,519

244 .0200 .0223 .0100 45.95 62.9 4,794 0.58 22.4 95,206

256 .0100 .0200 .0100 99.84 43.8 6,380 0.03 12.2 93,620

* 275 .0100 .0042 .0092 99.25 84.8 7,912 0.01 23.1 92,088

281 .0050 .1969 .0235 52.87 47.8 11,065 10.46 13.7 88,935

287 .0100 .3490 .0749 99.78 35.5 18,386 0.14 15.2 81,614

288 .0100 .4708 .0324 98.99 31.6 29,702 0.55 7.0 70,298

289 .0010 .0642 .0128 -20.46 67.9 57,823 0.25 16.1 442,177

297 .0200 .2667 .0852 97.41 22.5 18,076 2.53 36.1 481,924

300 .0010 .0652 .0391 -6.18 43.4 20,558 1.00 10.9 79,442

301 .0200 .7875 .0698 -12.19 23.9 35,159 8.80 10.4 464,841

305 .0200 .1760 .0451 100.0 28.2 295,210 0.00 1.1 204,790

314 .0025 .0027 .0080 94.82 61.8 2,836 0.45 20.6 97,164

392 .1000 2.8757 .0692 37.76 28.1 3,444 3.60 26.0 496,556

MVP1 .0050 .0776 .0119 99.45 39.2 17,444 0.12 13.3 82,557

MVP2 .0050 .2408 .0593 99.22 24.6 18,264 0.02 1.6 81,736

MVP3 .0050 .0860 .0284 97.36 201.3 259,358 0.03 26.3 240,642

MVP4 .0050 .2776 .0924 98.68 98.9 129,302 0.02 6.5 370,698

It should be noted, however, that for some problems, particularly in noise case 1, some

mildly significant improvement was still possible after iteration k (e.g., problems 110, 281,

and 301). In each of these cases, the average step length had not been reduced dramatically

from its initial setting, indicating that the algorithm may still have been making many

successful moves through the design space. In these situations, it would be advantageous

to have a parameter update strategy that monitored the decay rate of ∆k and adjusted the

decay rate of αk and δk accordingly. That is, if ∆k is decaying slowly then so should αk

139

Table 5.14. Termination Criteria Analysis for S-MGPS-RIN — Noise Case 2.

Test k ≤ k k < k ≤ kt
Problem ∆T ∆k αk %Q Iter. RS %Q Iter. RS

3 .0050 .0060 .0071 99.24 64.3 2,570 0.13 22.3 97,430

* 4 .0025 2.51e-5 .0068 97.09 70.1 2,563 0.16 26.0 97,437

5 .0050 .0084 .0067 96.68 62.3 2,877 0.57 19.4 97,123

* 25 .0200 .0086 .0048 91.44 71.0 5,054 0.07 18.4 94,946

* 36 .0100 1.35e-5 .0074 99.99 78.8 5,722 0.00 24.6 94,278

105 .0025 .1360 .0025 91.48 74.6 20,308 0.45 9.2 79,692

110 .0010 .0331 .0053 60.48 49.6 19,046 4.07 6.6 80,954

118 .0400 .2810 .0031 95.70 77.8 25,140 0.78 8.1 74,860

* 224 .0050 5.69e-5 .0073 99.92 90.6 4,164 0.00 28.9 95,836

244 .0200 .0243 .0074 75.25 58.4 4,002 1.36 19.1 95,998

256 .0100 .0111 .0077 99.93 45.6 5,232 0.02 12.8 94,768

* 275 .0100 .0027 .0078 99.67 88.2 8,345 0.00 22.5 91,655

281 .0050 .0223 .0060 93.63 50.3 17,368 0.61 7.1 82,632

287 .0100 .0193 .0020 99.97 99.0 79,485 0.00 1.4 20,515

288 .0100 .1959 .0074 99.99 45.8 25,781 0.00 4.6 74,219

289 .0010 .0519 .0067 -20.86 77.2 72,421 0.27 13.3 427,579

* 297 .0200 .0164 .0066 99.99 68.8 76,727 0.01 12.3 423,273

300 .0010 .0374 .0023 15.49 99.8 79,607 0.11 1.7 20,393

301 .0200 .0891 .0014 9.84 84.5 319,703 0.15 4.2 180,297

* 305 .0200 .0164 .0023 100.0 73.9 432,329 0.00 0.2 67,671

* 314 .0025 .0024 .0066 97.99 63.0 3,138 0.21 20.1 96,862

392 .1000 .8835 .0009 39.45 101.9 52,511 0.42 21.1 447,489

MVP1 .0050 .0321 .0076 99.72 47.5 9,216 0.03 20.7 90,784

MVP2 .0050 .2105 .0174 99.67 19.8 16,514 0.02 4.7 83,486

MVP3 .0050 .0080 .0042 99.64 302.3 286,778 0.01 29.1 213,222

MVP4 .0050 .0532 .0076 99.85 183.7 298,393 0.02 21.0 201,607

and δk to allow the search to continue exploring the design space aggressively before the

sampling requirements increase to prohibitive levels.

5.5.4 Summary of the Analysis

The analytical results of this section provide enough evidence to draw some conclu-

sions regarding the performance of the algorithms on the test problems considered in these

experiments. First, the use of surrogates and/or the SSM R&S procedure appears to have a

positive effect on algorithm performance in many cases, although the importance of trading

140

off switching costs with algorithm progress was illustrated. Secondly, the stochastic approx-

imation algorithms generally perform better for problems with continuous variables only,

although constrained problems can present these methods with some difficulties. Finally,

the proposed MGPS-RS termination criteria seem to offer a valid mechanism to establish

some algorithm stopping decision rules, particularly if the algorithms are modified to allow

adaptive update strategies for the R&S parameters.

141

Chapter 6 - Conclusions and Recommendations

A new class of algorithms for solving mixed-variable stochastic optimization problems

has been presented. It further generalizes the class of generalized pattern search algorithms

to noisy objective functions, using ranking and selection statistical procedures in the selec-

tion of new iterates. A rigorous analysis proves new convergence theorems, demonstrating

that a subsequence of iterates converges with probability one to a stationary point appropri-

ately defined in the mixed-variable domain. Additionally, advanced algorithm options using

modern R&S procedures, surrogate functions, and termination criteria, that provide com-

putational enhancements to the basic algorithm, have been developed and implemented.

Computational tests reveal that the advanced options can indeed improve performance,

allowing a performance comparison to popular methods from the stochastic optimization

literature. The original contributions of this dissertation research are summarized in Sec-

tion 6.1 and future research directions are proposed in Section 6.2.

6.1 Contributions

The primary contribution of this research is that it develops the first convergent al-

gorithm for numerically solving stochastic optimization problems over mixed-variable do-

mains. Although convergent algorithms that apply to continuous-only domains (e.g., sto-

chastic approximation) or discrete-only domains (e.g., random search) have been devised,

the algorithms presented in this dissertation bridge the gap between these two domain

types, illustrating enhanced generality relative to existing methods. MGPS-RS algorithms

are further generalized by their ability to readily handle problems with variable bounds

and/or a finite number of linear constraints in addition to unconstrained problems.

Although the convergence theory in Section 3.7 builds upon existing pattern search

theory [1,13,79—81,143,146], additional mathematical constructs were required to establish

142

new convergence results. In particular, the conditions placed on R&S parameters αr and

δr and the resulting proofs of Lemmas 3.13 and 3.14 using the Borel-Cantelli lemma are

original developments. The remaining lemmas and theorems extend existing theory by

establishing convergence in probabilistic terms appropriate for the stochastic setting.

Another important contribution of this research is the development of a viable strat-

egy for employing surrogate functions to augment the search. Although surrogate search

strategies for pattern search are not without precedent [30—32,39,86,127,145,147], this re-

search is the first to introduce kernel regression within a pattern search framework, the first

to apply surrogate-assisted pattern search algorithms in a stochastic setting, and the first

to make use of surrogates in solving MVP problems.

A third contribution is the development of effective termination criteria by combining

the traditional step length thresholding criterion with additional rules intended to avoid

unnecessary sampling. This strategy expresses the practical difference between two candi-

dates at termination, reflected in the indifference zone parameter, in terms of the standard

deviation of the response samples, providing a heuristic means to predict when sampling

requirements will dramatically increase. At the same time, it also ensures that the proba-

bility of selecting the best candidate in the terminal iteration meets a minimum threshold.

Such a method is important using sampling based methods to provide a means to impose

controls on potentially excessive sampling requirements.

A final contribution of this research is the computational study. The literature con-

sists of a limited number of such studies, primarily in the evaluation of direct search meth-

ods (e.g., [6, 23, 62]), yet these studies are restricted to unconstrained test problems and

moderate dimension, typically n = 20 or less. In the study presented in this dissertation,

substantial effort was directed toward the selection of a wide range of problem types and

143

algorithm implementations. The mixture of objective function types, constraint types, and

range of problem dimension is perhaps the most extensive collection to be tested in a sto-

chastic setting.

6.2 Future Research

The work presented in this dissertation can be extended in many directions. Sugges-

tions for future research can be generally organized into two categories: modifications to

the algorithmic framework; and extensions of the framework to a broader class of stochastic

optimization problems. These broad categories are discussed in the following subsections.

6.2.1 Modifications to Existing Search Framework

Adaptive Parameter Updates. It was briefly mentioned in Sections 4.3 and 5.5.3

that adaptive methods for updating algorithm parameters αr and δr may have the potential

to improve algorithm performance. In particular, if the parameters are decreased too ag-

gressively, then the algorithm increases the precision of the iterate selection decision earlier

in the iteration sequence than if the decay rate is slower. This can adversely impact per-

formance because the sampling requirements may increase prematurely while the search is

still actively moving through the design space, potentially slowing progress toward optimal-

ity. It would be beneficial to investigate adaptive parameter updates based on knowledge

gained during the search. Candidate strategies might include monitoring the rate of decay

of the step length parameter ∆k or the ratio of successful iterations to unsuccessful itera-

tions, and using the information gained to adjust the decay rate of αr and δr. Additionally,

in this research these parameters are represented as geometric sequences, but alternative

sequences may lead to better performance as long as the conditions required for algorithm

convergence are retained (assumption A6 in Section 3.7).

144

Selecting the Number of Design Sites. In the computational evaluation, the

number of design sites used to build the original surrogate function(s) was fixed, regardless

of the problem dimension. For the larger problems, it is possible that this led to greater

inaccuracies between the surrogate and true surfaces and the subsequent ineffective

steps observed in Section 5.5.1. A worthy endeavor would be to design a rule to link the

number of original design sites to problem dimension. As the dimension grows, simple

procedures may include increasing the strength of the LHS design and/or the number of

intervals p that divide each dimension.

Alternative Kernel Functions. In this research, Gaussian kernels were used to

build the surrogate functions, but alternative mound-shaped kernels may offer advantages

over Gaussians. An example is the Epanechnikov kernel with parabolic shape, described in

[43] and [55, pp. 25-28]. This kernel takes a value of zero outside a fixed interval, which can

lead to numerical benefits over a Gaussian kernel. The Gaussian kernel takes on very small

values for points sufficiently far from all design sites, which can cause numerical underflow

on a computer [55, p. 25]. There may be additional benefits related to surrogate accuracy

that can be realized by using alternative kernels.

Alternative Surrogate Families. Another modification to the surrogate-based ap-

proach is to replace kernel regression surfaces with an alternative family of surrogates. In

previous studies coupling surrogates with pattern search [30—32, 39, 86, 127, 145, 147], krig-

ing or interpolating splines were used as the methods to approximate the response surface.

Many other methods, such as traditional polynomial regression via least squares or the use

of artificial neural networks, may be tried that might lead to improvements in algorithm

performance.

145

Improving the Efficiency of Searching the Surrogate. Additional efficiencies

may be realized by modifying how the search of the surrogate is conducted. In the algorithm

implementation described in Section 4.4.2, search of the surrogate surface is conducted via

a pattern search on the current mesh. However, it is also pointed out that for a very fine

mesh and a large number of design sites, this can become costly. Potential efficiencies may

be gained by replacing the pattern search with an alternative procedure, perhaps a gradient

or quasi-Newton search by deriving an analytical expression for the merit function gradient,

and then mapping the resultant point to the nearest mesh point. Another approach may be

to reduce the number of points that must be evaluated in the surrogate function by using

k-means clustering [41, pp. 526-528] to group the design sites into a smaller set of points.

Using this approach, the design sites are grouped into k clusters and the mean of each

cluster replaces all points in that cluster when evaluating the surrogate function. Many

iterative procedures exist (see [5]) to determine the number and location of the clusters

necessary to satisfy some predetermined criterion.

Balancing Sampling and Switching Costs. The analysis of Section 5.5 revealed

that, although the SSM procedure appears to achieve better solutions over a fixed sampling

budget, it can require a large number of switches between candidate designs. As a means

to balance the cost of sampling with the cost of switching, a simple modification may

be to implement the minimum switching sequential procedure, a R&S procedure recently

developed by Hong and Nelson [59], and evaluate its performance relative to the R&S

procedures implemented in this dissertation research. Hong and Nelson’s procedure, a two-

stage sampling procedure, uses the same number of switches as two-stage procedures when

additional samples are required for all candidates after the initial stage, but still maintains

sequential sampling.

146

Expanded Computational Testing. The computational evaluation of Chapter 5

provides valuable numerical experience and insights for MGPS-RS algorithms and their

performance relative to existing methods. However, an expanded testing program could

further enhance the understanding of when MGPS-RS might enjoy success and where ad-

ditional deficiencies reside. This testing should be broadened to more problems and may

consider some of the recommendations presented in the preceding paragraphs. Additional

value would be added with some case studies that applied the MGPS-RS algorithms to

the optimization of some real-world stochastic systems for which representative simulation

models exist.

6.2.2 Extensions to Broader Problem Classes

Relaxing the Smoothness Assumption. A restrictive assumption of the conver-

gence analysis is that the true objective function is continuously differentiable with respect

to the continuous variables when the discrete variables are fixed. Applying the Clarke cal-

culus [35] in the deterministic setting, Audet and Dennis [14] relax this assumption and

present a hierarchy of convergence results where the strength of the results depend on local

smoothness properties. A worthy research avenue would be to further extend the results

for the stochastic setting in the context of the MGPS-RS framework.

Nonlinear Constraints. In this research, the constraints are restricted to bound

and linear constraints only. A worthwhile extension to MGPS-RS algorithms would be to

make them applicable to nonlinear constraints also, perhaps by adapting tools from any

of the three pattern search methods applied to nonlinearly constrained deterministic prob-

lems discussed in Section 2.2.1: the augmented Lagrangian approach of Lewis and Torczon

[82], the filter method of Audet and Dennis [16], and the Mesh Adaptive Direct Search

(MADS) algorithm of Audet and Dennis [15]. In particular, the MADS algorithm extends

147

pattern search by generating mesh directions that become dense in the limit. However, as

these directions become dense, their number becomes unbounded. Since this is prohibitive

in practice, an implementable instance is provided in [15], in which positive spanning di-

rections are randomly selected at each iteration. The cost of doing so, however, is the

weaker condition of convergence with probability 1 to a stationary point. Extending any

of the deterministic algorithms [15, 16, 82] to the stochastic setting results in the weaker

convergence results, but nothing is lost with MADS, since its convergence result is already

in probabilistic terms.

Multiple Responses. In this research, the target problem class contains only a single

system response output, the minimization of which is the objective of the optimization task.

This problem class can be broadened to problems that have multiple response outputs.

Depending on the objectives of the optimization problem, the additional responses can

be considered in two different ways: (a) as additional constraints, or (b) as additional

objectives. In the first case, the additional responses may be constrained to a specified

performance range. Since these responses may not be linear, any of the techniques suggested

in the preceding paragraph for handling nonlinear constraints could be employed. However,

the stochastic nature of the new constraints may require additional assumptions to ensure

sound theoretical convergence results.

In the second case, the target problem becomes one with multiple objectives. For multi-

objective stochastic optimization problems, specialized statistical procedures are needed to

select iterates and retain the rigor of the selection. An approach for simulation optimization

using direct search is suggested in [90], employing Hotelling’s T 2 procedure. This approach

consists of two testing phases to compare the incumbent with a single candidate, a first

phase consisting of an all-pairwise two-sample comparison of means of all responses followed

148

by a second phase of a two-sample comparison of means on a weighted sum of all responses.

After the first phase, if at least one response mean of the candidate is significantly deficient

or all response means are statistically insignificant, the candidate is rejected. If all response

means are significantly improved, then the candidate is accepted. However, if at least

one response mean is significantly improved while at least one is statistically insignificant,

then the second phase is conducted where the candidate is accepted if the weighted sum

function is significantly improved and rejected otherwise. This approach is extended in [89]

to account for correlation between the different responses. Employing such a method within

the pattern search framework in lieu of an R&S procedure to select new iterates may be a

worthwhile research area for multi-objective stochastic optimization. Alternatively, some

limited work in indifference-zone R&S procedures has been done to extend these techniques

to multiple responses (see [140, pp. 139-140] for a brief review), which would coincide more

closely with the framework presented in this dissertation. It would be useful to explore

iterative use of these methods within MGPS-RS for multi-objective stochastic optimization.

149

APPENDIX A - Test Problem Details

This Appendix provides the details of the twenty-two continuous-variable test prob-

lems used in the computational evaluation. The problem numbers are as assigned in the

publications from which they were selected [58,122]. Each of the problems is classified ac-

cording to the category combination defined in Section 5.3. The classification scheme has

a three letter designator: the first letter is the objective function type (Q - quadratic, S

- sum of squares, P - generalized polynomial, G - general nonlinear); the second letter is

the constraint information (U - unconstrained, B - bounds only, L - linear constraints and

bounds); and the third letter designates problem size (S - small, M - medium, L - large).

Each problem listing also includes the number of variables, the number of bounds, the

number of linear constraints, the objective functional form, the starting point, the optimal

solution, and the form of the constraints.

Problem 3

Category combination: QBS

Number of variables: 2

Number of bounds: 1

Number of linear constraints: 0

Objective function: f(x) = x2 + 10−5(x2 − x1)2

Bounds: 0 ≤ x2

Starting point: x = (10, 1), f(x) = 1.0081

Optimal solution: x∗ = (0, 0), f(x∗) = 0

150

Problem 4

Category combination: GBS

Number of variables: 2

Number of bounds: 2

Number of linear constraints: 0

Objective function: f(x) = 1
3(x1 + 1)

3 + x2

Bounds: 1 ≤ x1, 0 ≤ x2

Starting point: x = (1.125, 0.125), f(x) = 3.323568

Optimal solution: x∗ = (1, 0), f(x∗) = 8
3

Problem 5

Category combination: GBS

Number of variables: 2

Number of bounds: 4

Number of linear constraints: 0

Objective function: f(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1

Bounds: −1.5 ≤ x1 ≤ 4, −3 ≤ x2 ≤ 3

Starting point: x = (0, 0), f(x) = 1

Optimal solution: x∗ = (−π
3 +

1
2 ,−π

3 − 1
2), f(x

∗) = −12
√
3− π

3

151

Problem 25

Category combination: SBS

Number of variables: 3

Number of bounds: 6

Number of linear constraints: 0

Objective function: f(x) =
99

i=1

(fi(x))
2

where fi(x) = −.01i+ exp − 1
x1
(ui − x2)x3

and ui = 25 + (−50 ln(.01i))2/3, i = 1, . . . , 99

Bounds: 0.1 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 25.6, 0 ≤ x3 ≤ 5

Starting point: x = (100, 12.5, 3), f(x) = 32.835

Optimal solution: x∗ = (50, 25, 1.5), f(x∗) = 0

Problem 36

Category combination: PLS

Number of variables: 3

Number of bounds: 6

Number of linear constraints: 1

Objective function: f(x) = −x1x2x3

Bounds: 0 ≤ x1 ≤ 20, 0 ≤ x2 ≤ 11, 0 ≤ x3 ≤ 42

Starting point: x = (10, 10, 10), f(x) = −1000

Optimal solution: x∗ = (20, 11, 15), f(x∗) = −3300

Constraint: x1 + 2x2 + 2x3 ≤ 72

152

Problem 105

Category combination: GLS

Number of variables: 8

Number of bounds: 16

Number of linear constraints: 1

Objective function: f(x) =
235

i=1

ln (ai(x) + bi(x) + ci(x))/
√
2π

where for i = 1, . . . , 235,

ai(x) =
x1
x6
exp −(yi − x3)2/2x26 ,

bi(x) =
x2
x7
exp −(yi − x4)2/2x27 ,

ci(x) =
1−x2−x1

x8
exp −(yi − x5)2/2x28 ,

and yi is as defined in Table that follows

Bounds: 0.001 ≤ xi ≤ 0.499, i = 1, 2,
100 ≤ x3 ≤ 180, 120 ≤ x4 ≤ 210, 170 ≤ x5 ≤ 240,
5 ≤ xi ≤ 25, i = 6, 7, 8

Starting point: x = (.1, .2, 100, 125, 175, 11.2, 13.2, 15.8),
f(x) = 1297.6693

Optimal solution: x∗ = (.4128928, .4033526, 131.2613, 164.3135,
217.4222, 12.28018, 15.77170, 20.74682),

f(x∗) = 1138.416240

Constraint: x1 + x2 ≤ 1

153

Additional Data (yi) for Problem 105.

i yi i yi i yi

1 95 102—118 150 199—201 200

2 105 119—122 155 202—204 205

3—6 110 123—142 160 205—212 210

7—10 115 143—150 165 213 215

11—25 120 151—167 170 214—219 220

26—40 125 168—175 175 220—224 230

41—55 130 176—181 180 225 235

56—68 135 182—187 185 226—232 240

69—89 140 188—194 190 233 245

90—101 145 195—198 195 234—235 250

Problem 110

Category combination: GBM

Number of variables: 10

Number of bounds: 20

Number of linear constraints: 0

Objective function: f(x) =
10

i=1

(ln(xi − 2))2 + (ln(10− xi))2 −
10

i=1

xi

0.2

Bounds: 2.001 ≤ xi ≤ 9.999, i = 1, . . . , 10

Starting point: x = (9, . . . , 9), f(x) = −43.134337

Optimal solution: x∗ = (9.35025655, . . . , 9.35025655),
f(x∗) = −45.77846971

154

Problem 118

Category combination: QLM

Number of variables: 15

Number of bounds: 30

Number of linear constraints: 29

Objective function: f(x) =
4

i=1

(2.3x3i+1 + .0001x
2
3i+1 + 1.7x3i+2

+.0001x23i+2 + 2.2x
2
3i+3 + .00015x

2
3i+3)

Bounds: 8 ≤ x1 ≤ 21, 43 ≤ x2 ≤ 57, 3 ≤ x3 ≤ 16,
0 ≤ x3i+1 ≤ 90, 0 ≤ x3i+2 ≤ 120, 0 ≤ x3i+3 ≤ 60,

i = 1, 2, 3, 4

Starting point: x = (20, 55, 15, 20, 60, 20, 20, 60, 20, 20, 60, 20, 20, 60, 20),
f(x) = 769.8400

Optimal solution: x∗ = (8, 49, 3, 1, 56, 0, 1, 63, 6, 3, 70, 12, 5, 77, 18)
f(x∗) = 556.2726

Constraints: l ≤ Ax ≤ u, where

l = [−7,−7,−7,−7,−7,−7,−7,−7,−7,−7,−7,−7, 60, 50, 70, 85, 100]T ,

u = [6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6,∞,∞,∞,∞,∞]T , and

155

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0
0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0
0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 224

Category combination: QLS

Number of variables: 2

Number of bounds: 4

Number of linear constraints: 4

Objective function: f(x) = 2x21 + x
2
2 − 48x1 − 40x2

Bounds: 0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 6

Starting point: x = (0.1, 0.1), f(x) = −8.77

Optimal solution: x∗ = (4, 4), f(x∗) = −304

Constraints: l ≤ Ax ≤ u, where

l =
0
0

, A =
1 3
1 1

, and u =
18
8

156

Problem 244

Category combination: SUS

Number of variables: 3

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) =
10

i=1

[exp(−x1zi)− x3 exp(−x2zi)− yi]2

where yi(x) = exp (−zi)− 5 exp(−10zi)

and zi = 0.1i, i = 1, . . . , 10

Starting point: x = (1, 2, 1), f(x) = 1.59884

Optimal solution: x∗ = (1, 10, 5), f(x∗) = 0

Problem 256

Category combination: PUS

Number of variables: 4

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) = (x1 + 10x2)
2 + 5(x3 − x4)2 + (x2 − 2x3)4

+10(x1 − x4)4 (Powell function)

Starting point: x = (3,−1, 0, 1), f(x) = 215

Optimal solution: x∗ = (0, 0, 0, 0), f(x∗) = 0

157

Problem 275

Category combination: QUS

Number of variables: 4

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) = xTQx

where Q(i, j) = 1
i+j−1 (4×4 Hilbert Matrix)

Starting point: x = (−4,−2,−1.333,−1), f(x) = 33.9651

Optimal solution: x∗ = (0, 0, 0, 0), f(x∗) = 0

Problem 281

Category combination: GUM

Number of variables: 10

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) =
10

i=1

i3(xi − 1)2
1/3

Starting point: x = (0, . . . , 0), f(x) = 14.4624

Optimal solution: x∗ = (1, . . . , 1), f(x∗) = 0

158

Problem 287

Category combination: PUM

Number of variables: 20

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) =
5

i=1

100(x2i − xi+5)2 + (xi − 1)2

+90(x2i+10 − xi+15)2 + (xi+10 − 1)2

+10.1((xi+5 − 1)2 + (xi+15 − 1)2)

+19.8(xi+5 − 1)(xi+15 − 1)]

Starting point: xi = −3, i = 1, . . . , 5, 11, . . . , 15,
xi = −1, i = 6, . . . , 10, 16, . . . , 20

f(x) = 95960

Optimal solution: x∗ = (1, . . . , 1), f(x∗) = 0

Problem 288

Category combination: SUM

Number of variables: 20

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) =
5

i=1

(xi + 10xi+5)
2 + 5(xi+10 − xi+15)2

+(xi+5 − 2xi+10)4 + 10(xi − xi+15)4

Starting point: xi = 3, i = 1, . . . , 5, xi = −1, i = 6, . . . , 10,
xi = 0, i = 11, . . . , 15, xi = 1, i = 16, . . . , 20,

f(x) = 1075

Optimal solution: x∗ = (0, . . . , 0), f(x∗) = 0

159

Problem 289

Category combination: GUL

Number of variables: 30

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) = 1− exp − 1
60

30

i=1

x2i

Starting point: x = (−1.03, 1.07,−1.10, 1.13,−1.17, 1.20,−1.23, 1.27,
−1.30, 1.33,−1.37, 1.40,−1.43, 1.47,−1.50, 1.53,
−1.57, 1.60,−1.63, 1.67,−1.70, 1.73,−1.77, 1.80,
−1.83, 1.87,−1.90, 1.93,−1.97, 2.00),

f(x) = 0.696313

Optimal solution: x∗ = (0, . . . , 0), f(x∗) = 0

Problem 297

Category combination: SUL

Number of variables: 30

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) =
29

i=1

100(xi+1 − x2i)2 + (1− xi)2

(Rosenbrock banana function)

Starting point: x = (−1.2, 1, . . . ,−1.2, 1), f(x) = 7139

Optimal solution: x∗ = (1, . . . , 1), f(x∗) = 0

160

Problem 300

Category combination: QUM

Number of variables: 20

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) = xTQx− 2x1

where Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0

−1 2 −1 0
...

0 −1 2 −1 0
...
. . .

. . .
. . .

. . .

0 −1 2 −1
0 . . . 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Starting point: x = (0, . . . , 0), f(x) = 0

Optimal solution: x∗ = (20, 19, 18, . . . , 2, 1), f(x∗) = −20

Problem 301

Category combination: QUL

Number of variables: 50

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) = xTQx− 2x1

where Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0

−1 2 −1 0
...

0 −1 2 −1 0
...
. . .

. . .
. . .

. . .

0 −1 2 −1
0 . . . 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Starting point: x = (0, . . . , 0), f(x) = 0

Optimal solution: x∗ = (50, 49, 48, . . . , 2, 1), f(x∗) = −50

161

Problem 305

Category combination: PUL

Number of variables: 100

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) =
100

i=1

x2i +
100

i=1

1
2i xi

2

+
100

i=1

1
2i xi

4

Starting point: x = (0.1, . . . , 0.1), f(x) = 4064923200

Optimal solution: x∗ = (0, . . . , 0), f(x∗) = 0

Problem 314

Category combination: GUS

Number of variables: 2

Number of bounds: 0

Number of linear constraints: 0

Objective function: f(x) = (x1 − 2)2 + (x2 − 1)2 + 0.04
g(x) +

(h(x))2

0.2 ,

where g(x) = −14x21 − x22 + 1,

and h(x) = x1 − 2x2 + 1

Starting point: x = (2, 2), f(x) = 5.99

Optimal solution: x∗ = (1.789, 1.374), f(x∗) = 0.169040

162

Problem 392

Category combination: QLL

Number of variables: 30

Number of bounds: 45

Number of linear constraints: 30

Objective function: f(x) =
5

i=1

3

j=1

(r1ji − kAji)x3(i−1)+j − r2jix23(i−1)+j

−(k1ji + kPji)x12+3i+j

−(k3ji + kL1ji)(x12+3i+j − xj+3i−3)2

−kL2ji
i

=1
(x12+j+3 − xj−3+3)

where r1ji, r2ji, kAji, k1ji, kPji, k3ji, kL1ji, and kL2ji
are as defined in Table that follows

Bounds: 0 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 280, 0 ≤ x3 ≤ 520,
0 ≤ x4 ≤ 180, 0 ≤ x5 ≤ 400, 0 ≤ x6 ≤ 400,
0 ≤ x7 ≤ 220, 0 ≤ x8 ≤ 450, 0 ≤ x9 ≤ 500,
0 ≤ x10 ≤ 150, 0 ≤ x11 ≤ 450, 0 ≤ x12 ≤ 630,
0 ≤ x13 ≤ 100, 0 ≤ x14 ≤ 400, 0 ≤ x15 ≤ 600,
xi ≥ 0, i = 16, . . . , 30

Starting point: x = (80, 50, 370, 100, 150, 200, 100, 250, 400, 50,
200, 500, 50, 200, 500, 100, 120, 410, 120, 190,
190, 60, 240, 370, 130, 100, 510, 30, 250, 510),3

f(x) = −845999

Optimal solution: x∗ = (99.99, 142.22, 519.88, 136.74, 103.47, 399.99,
191.70, 1.56, 500, 143.43, 82.39, 629.82,
99.92, 125.22, 600, 101.85, 142.25, 519.88,
144.58, 105.73, 409.59, 182.01, 29.34, 490.52,
143.43, 52.43, 629.70, 99.92, 125.12, 600),

f(x∗) = −1693551.668

Constraints: l ≤ Ax ≤ u, where
li = −∞, i = 1, . . . , 15, li = 0, i = 16, . . . , 30,
ui = 170, i = 1, 2, 4, 5, 7, 8, 10, 11, 13, 14,
ui = 180, i = 3, 6, 8, 12, 15, ui =∞, i = 16, . . . , 30,

3Starting point was modified from published version to make it feasible.

163

A = A1 A2 ,

A1 =

⎡⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 0 −1 0 0 0 0 0 0
−1 0 0 −1 0 0 −1 0 0 −1 0 0 0 0 0
0 −1 0 0 −1 0 0 −1 0 0 −1 0 0 0 0
0 0 −1 0 0 −1 0 0 −1 0 0 −1 0 0 0
−1 0 0 −1 0 0 −1 0 0 −1 0 0 −1 0 0
0 −1 0 0 −1 0 0 −1 0 0 −1 0 0 −1 0
0 0 −1 0 0 −1 0 0 −1 0 0 −1 0 0 −1

⎤⎥⎥⎥⎦

,

164

and

A2 =

⎡⎢⎢⎢⎣

.6 .4 .1 0 0 0 0 0 0 0 0 0 0 0 0

.3 .1 .12 0 0 0 0 0 0 0 0 0 0 0 0
.36 .08 .06 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 .6 .4 .1 0 0 0 0 0 0 0 0 0
0 0 0 .3 .1 .12 0 0 0 0 0 0 0 0 0
0 0 0 .36 .08 .06 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 .6 .4 .1 0 0 0 0 0 0
0 0 0 0 0 0 .3 .1 .12 0 0 0 0 0 0
0 0 0 0 0 0 .36 .08 .06 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 .6 .4 .1 0 0 0
0 0 0 0 0 0 0 0 0 .3 .1 .12 0 0 0
0 0 0 0 0 0 0 0 0 .36 .08 .06 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 .6 .4 .1
0 0 0 0 0 0 0 0 0 0 0 0 .3 .1 .12
0 0 0 0 0 0 0 0 0 0 0 0 .36 .08 .06
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

⎤⎥⎥⎥⎦

Additional Data for Problem 392.

j = 1 j = 2 j = 3
i i i

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

r1ji 1000 1100 520 600 910 1000

r2ji 0.3 0.1 0.2

kAji 120 150 150 170 170 65 80 105 120

k1ji 150 170 75 90 140 150

kPji 160 180 75 90 140 150

k3ji .02 .2 .25 .01 .1 .1 .15 .015 .15

kL1ji .005 .05 .06 .005 .05 .06 .005 .05 .06

kL2ji 80 100 45 50 75 90

165

APPENDIX B - Test Result Data

Some additional details from the test results are presented in this appendix. Section

B.1 presents a series of charts that shows the iteration history of the algorithms for all

test problems. Section B.2 provides the data to support the ANOVA and nonparametric

procedures of Section 5.5.1.

B.1 Iteration History Charts

To give a visual perspective of algorithm progression, a series of graphs are displayed

on the pages that follow that plot performance measure Q, averaged over 30 replications,

versus the number of response samples obtained for each algorithm, noise case, and test

problem. The graphs are shown on log scales so that the progression in the latter stages of

the search can be seen more easily. In the graph legends, the names of the algorithms are

referred to as follows:

• RIN — MGPS with Rinott’s procedure and no surrogates,
• SSM — MGPS with Sequential Selection with Memory procedure and no

surrogates,

• SAS — MGPS with Screen-and-Select procedure and no surrogates,
• S-RIN — Surrogate assisted MGPS with Rinott’s procedure,
• S-SSM — Surrogate assisted MGPS with Sequential Selection with Memory

procedure,

• S-SAS — Surrogate assisted MGPS with Screen-and-Select procedure,
• FDSA — Finite-Difference Stochastic Approximation,
• SPSA — Simultaneous Perturbation Stochastic Approximation,
• RNDS — Random Search, and

• NM — Nelder-Mead simplex search.

For the continuous-variable problems, each of the MGPS-RS variants are plotted on the

left of the page and on the right, all remaining algorithm implementations are plotted with

S-SSM for a visual comparison with a MGPS-RS variant.

166

Test Problem 3

Noise Case 1

Noise Case 2

167

Test Problem 4

Noise Case 1

Noise Case 2

168

Test Problem 5

Noise Case 1

Noise Case 2

169

Test Problem 25

Noise Case 1

Noise Case 2

170

Test Problem 36

Noise Case 1

Noise Case 2

171

Test Problem 105

Noise Case 1

Noise Case 2

172

Test Problem 110

Noise Case 1

Noise Case 2

173

Test Problem 118

Noise Case 1

Noise Case 2

174

Test Problem 224

Noise Case 1

Noise Case 2

175

Test Problem 244

Noise Case 1

Noise Case 2

176

Test Problem 256

Noise Case 1

Noise Case 2

177

Test Problem 275

Noise Case 1

Noise Case 2

178

Test Problem 281

Noise Case 1

Noise Case 2

179

Test Problem 287

Noise Case 1

Noise Case 2

180

Test Problem 288

Noise Case 1

Noise Case 2

181

Test Problem 289

Noise Case 1

Noise Case 2

1×105 5×105 1×105 5×105

1×105 5×105 1×105 5×105

182

Test Problem 297

Noise Case 1

Noise Case 2

1×105 5×105 1×105 5×105

1×105 5×105 1×105 5×105

183

Test Problem 300

Noise Case 1

Noise Case 2

1×105 5×105

184

Test Problem 301

Noise Case 1

Noise Case 2

1×105 5×105 1×105 5×105

1×105 5×105 1×105 5×105

185

Test Problem 305

Noise Case 1

Noise Case 2

1×105 5×105 1×105 5×105

1×105 5×105 1×105 5×105

186

Test Problem 314

Noise Case 1

Noise Case 2

5×105

187

Test Problem 392

Noise Case 1

Noise Case 2

1×105 5×105 1×105 5×105

1×105 5×105 1×105 5×105

188

Test Problem MVP1

Noise Case 1 Noise Case 2

Test Problem MVP2

Noise Case 1 Noise Case 2

189

Test Problem MVP3

1×105 5×105 1×105 5×105

1×105 5×105
1×105 5×105

Noise Case 1 Noise Case 2

Test Problem MVP4

Noise Case 1 Noise Case 2

190

B.2 Statistical Analysis Data Summary

Data necessary to support the ANOVA of Section 5.5.1 is provided in Table B.1 for each

of the performance measures Q and P . The transformation function used for experiment

outcome Qijk and Pijk , for 1 ≤ i ≤ 3 (index on R&S procedure), 1 ≤ j ≤ 2 (index on the

use of surrogates), 1 ≤ k ≤ 2 (index on noise case), and 1 ≤ ≤ 30 (index on replication)

is shown in the T (Qijk) and T (Pijk) column, respectively. Also shown is the test statistic

W for the Shapiro-Wilk test for nonnormality of the studentized residuals and the p-value

associated with that test. The closerW is to unity, the more likely the data will be accepted

as normal. The null hypothesis is that the data are normal, so a p-value greater than .05

would indicate that the null hypothesis is not rejected at a .05 significance level. On the

pages following Table B.3 a series of charts is shown for each test problem that plots the

studentized residuals versus their predicted values as a visual test of the constant variance

assumption, and the normal probability plot of the studentized residuals as a visual test of

the normality assumption.

The results of the nonparametric tests are presented in Tables B.2 and B.3 for per-

formance measures Q and P , respectively. In the tables, p-values are displayed that test

for differences in the distributions as a result of the R&S procedure (RS), using surrogates

(SRCH), and noise. The column headings are defined as follows:

• WIL — Wilcoxon rank-sum procedure,

• KW — Kruskal-Wallis procedure,

• MED — two-sample median procedure,
• BM — Brown-Mood procedure, and

• VDW — van der Waerden procedure.

Both WIL and KW test the null hypothesis that the independent samples represent

populations with the same median value. The MED, BM, and VDW procedures test

191

the null hypothesis that the independent samples derive from the same distribution. In

all cases, a p-value greater than 0.05 indicates that the null hypothesis is not rejected

at the .05 significance level. P-values that are enclosed by a rectangle signify tests that

disagree with the results of the ANOVA and multiple comparison procedures of Section

5.5.1. For example, in test problem 36, the ANOVA procedure specified the effect of the

R&S procedure to be significant at the .05 level for performance measure Q, but each of

the three nonparametric tests fail to reject their null hypotheses at this significance level.

192

Table B.1. Transformation functions and Shapiro-Wilk Nonnormality Test Re-
sults.

Test Performance Measure Q Performance Measure P

Problem T (Qijk) W p-value T (Pijk) W p-value

3 log(Q) .993 .199 P
1

2 .858 .000

4 log(Q+ 1) .806 .000 (P + 1)−
1

2 .854 .000

5 log(Q) .990 .015 log(P) .983 .000

25 Q2 .986 .002 P .982 .000

36 log(Q) .963 .000 log(P) .968 .000

105 Q .925 .000 P .903 .000

110 Q .990 .015 P .993 .078

118 log(Q) .961 .000 log(P) .946 .000

224 log(Q) .980 .000 P
1

2 .992 .059

244 log(Q) .967 .000 P .990 .016

256 log(Q) .977 .000 P
1

2 .988 .004

275 log(Q) .966 .000 P
1

2 .998 .879

281 (Q+ 1)−1 .951 .000 P
1

2 .964 .000

287 Q−
1

2 .862 .000 P−
1

2 .901 .000

288 log(Q) .980 .000 log(P) .982 .000

289 Q
1

2 .886 .000 P−1 .895 .000

297 log(Q) .982 .000 log(P) .904 .000

300 log(Q) .931 .000 log(P) .825 .000

301 log(Q) .965 .000 P .957 .000

305 log(Q) .788 .000 P−1 .772 .000

314 log(Q) .939 .000 P
1

2 .990 .017

392 Q .889 .000 P .931 .000

MVP1 log(Q) .994 .174 log(P) .981 .000

MVP2 log(Q) .996 .437 log(P) .960 .000

MVP3 log(Q) .904 .000 log(P) .937 .000

MVP4 log(Q) .944 .000 log(P) .925 .000

193

Table B.2. P-values for Nonparametric Tests — Performance Measure Q.

Test RS SRCH Noise

Problem KW BM VDW WIL MED VDW WIL MED VDW

3 .038 .498 .026 .000 .000 .000 .000 .003 .000

4 .074 .792 .045 .000 .000 .000 .008 .400 .002

5 .836 .436 .772 .000 .003 .002 .000 .003 .000

25 .613 .671 .538 .000 .035 .000 .000 .000 .000

36 .051 .108 .059 .000 .000 .000 .003 .006 .002

105 .707 .007 .814 .000 .000 .000 .000 .000 .000

110 .322 .532 .284 .977 .293 .768 .000 .000 .000

118 .700 .532 .754 .001 .012 .000 .000 .000 .000

224 .488 .436 .585 .717 .833 .471 .000 .000 .000

244 .235 .792 .135 .041 .006 .149 .000 .001 .000

256 .007 .072 .012 .000 .000 .000 .000 .002 .000

275 .833 .792 .721 .976 .674 .708 .001 .058 .000

281 .022 .150 .010 .008 1.00 .000 .000 .000 .000

287 .489 .274 .211 .003 .006 .017 .000 .000 .000

288 .000 .000 .000 .002 .000 .022 .000 .000 .000

289 .410 .967 .247 .000 .000 .000 .706 .833 .763

297 .000 .008 .000 .000 .000 .000 .000 .000 .000

300 .133 .741 .132 .000 .000 .000 .000 .000 .000

301 .000 .532 .000 .255 .528 .222 .000 .000 .000

305 .000 .027 .000 .456 .400 .553 .000 .000 .000

314 .028 .012 .037 .085 .141 .050 .000 .002 .000

392 .079 .027 .083 .000 .000 .000 .000 .000 .000

MVP1 .000 .000 .000 .023 .021 .083 .000 .000 .000

MVP2 .000 .000 .000 .759 .599 .540 .000 .002 .000

MVP3 .000 .002 .000 .765 .833 .846 .000 .000 .000

MVP4 .004 .967 .000 .276 .674 .435 .000 .000 .000

194

Table B.3. P-values for Nonparametric Tests — Performance Measure P .

Test RS SRCH Noise

Problem KW BM VDW WIL MED VDW WIL MED VDW

3 .470 .292 .424 .000 .000 .000 .760 .674 .601

4 .055 .792 .032 .000 .000 .000 .039 .400 .016

5 .734 .876 .625 .064 .207 .120 .000 .012 .000

25 .653 .967 .485 .000 .000 .000 .000 .000 .037

36 .491 .792 .485 .086 1.00 .032 .024 .528 .017

105 .507 .088 .420 .000 .000 .000 .000 .000 .000

110 .318 .532 .281 .932 .293 .798 .000 .000 .000

118 .838 .532 .922 .000 .000 .000 .000 .000 .000

224 .128 .274 .160 .730 .833 .508 .000 .000 .000

244 .867 .875 .815 .000 .000 .000 .080 .207 .039

256 .076 .108 .134 .210 .400 .063 .000 .000 .000

275 .817 .741 .886 .499 .528 .426 .841 .528 .786

281 .034 .292 .007 .817 .833 .859 .000 .000 .000

287 .062 .080 .040 .000 .000 .000 .000 .674 .000

288 .000 .088 .000 .105 .027 .436 .000 .000 .000

289 .410 .967 .247 .000 .000 .000 .706 .833 .763

297 .000 .000 .000 .346 .599 .391 .000 .000 .000

300 .586 .741 .723 .000 .000 .000 .000 .006 .000

301 .004 .357 .000 .491 .528 .587 .000 .000 .000

305 .000 .024 .000 .314 .141 .477 .000 .000 .000

314 .087 .357 .112 .030 .141 .042 .000 .000 .000

392 .052 .039 .045 .000 .000 .000 .000 .000 .000

MVP1 .067 .240 .041 .317 .141 .436 .000 .001 .000

MVP2 .000 .000 .000 .589 .204 .737 .000 .003 .000

MVP3 .001 .028 .000 .339 .833 .107 .000 .000 .000

MVP4 .078 .967 .019 .682 .400 .328 .000 .000 .000

195

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

R
O

O
T

P
 R

es
id

ua
l

.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.2 1.4 1.6

ROOTP Predicted

-5

-4

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

Test Problem 3

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-5

-3

-1

1

3

5

LO
G

Q
 R

es
id

ua
l

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

LOGQ Predicted

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

196

Test Problem 4

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

LO
G

Q
+

R
es

id
u

al

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.2

LOGQ+ Predicted

-2

-1

0

1

2

3

4

5
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

0

1/
R

O
O

T
P

+
R

es
id

ua
l

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

1/ROOTP+ Predicted

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

197

Test Problem 5

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-5

-4

-3

-2

-1

0

1

2

3

4

LO
G

Q
 R

es
id

ua
l

-7 -6 -5 -4 -3 -2 -1 0

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-3

-2

-1

0

1

2

3

LO
G

P
 R

e
si

du
al

-4 -3 -2 -1 0 1

LOGP Predicted

-3

-2

-1

0

1

2

3 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

198

Test Problem 25

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Q
2

R
es

id
ua

l

.00 .01 .02

Q2 Predicted

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

P
 R

es
id

u
al

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1

P Predicted

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

199

Test Problem 36

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-4

-3

-2

-1

0

1

2

3

LO
G

Q
 R

es
id

ua
l

-14 -13 -12 -11 -10 -9 -8 -7

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-5

-4

-3

-2

-1

0

1

2

3

LO
G

P
 R

es
id

ua
l

-14 -13 -12 -11 -10 -9 -8 -7 -6

LOGP Predicted

-4

-3

-2

-1

0

1

2 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

200

Test Problem 105

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Q
 R

es
id

ua
l

.0 .1 .2 .3 .4 .5 .6 .7 .8

Q Predicted

-3

-2

-1

0

1

2

3

4

5

6
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.5

-0.4
-0.3

-0.2
-0.1

0.0
0.1

0.2
0.3

0.4
0.5

P
 R

e
si

du
al

.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2

P Predicted

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

201

Test Problem 110

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

0

1

Q
 R

es
id

ua
l

0 1

Q Predicted

-3

-2

-1

0

1

2

3

4
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

P
 R

e
si

du
al

.1 .2 .3 .4 .5 .6 .7 .8 .91.0 1.2 1.4 1.6

P Predicted

-4

-3

-2

-1

0

1

2

3 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

202

Test Problem 118

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-4

-3

-2

-1

0

1

2

3

LO
G

Q
 R

es
id

ua
l

-8 -7 -6 -5 -4 -3 -2 -1

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

LO
G

P
 R

es
id

ua
l

-2.5 -2.0 -1.5 -1.0 -0.5 .0 .5

LOGP Predicted

-4

-3

-2

-1

0

1

2

3

4
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

203

Test Problem 224

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-4

-3

-2

-1

0

1

2

3

LO
G

Q
 R

es
id

ua
l

-12 -11 -10 -9 -8 -7 -6 -5 -4

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.2

-0.1

0.0

0.1

0.2

0.3

R
O

O
T

P
 R

es
id

ua
l

.0 .1 .2 .3 .4 .5 .6

ROOTP Predicted

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

204

Test Problem 244

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-4

-3

-2

-1

0

1

2

LO
G

Q
 R

es
id

ua
l

-6 -5 -4 -3 -2 -1 0 1

LOGQ Predicted

-4

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

P
 R

e
si

du
al

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.1 1.2

P Predicted

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

205

Test Problem 256

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-5

-4

-3

-2

-1

0

1

2

3

LO
G

Q
 R

es
id

ua
l

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

R
O

O
T

P
 R

es
id

u
al

.1 .2 .3 .4 .5 .6 .7 .8

ROOTP Predicted

-2

-1

0

1

2

3

4 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

206

Test Problem 275

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-4

-3

-2

-1

0

1

2

LO
G

Q
 R

es
id

ua
l

-10 -9 -8 -7 -6 -5 -4 -3

LOGQ Predicted

-4

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.5

-0.4
-0.3

-0.2
-0.1

0.0
0.1

0.2
0.3

0.4
0.5

R
O

O
T

P
 R

es
id

u
al

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2

ROOTP Predicted

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

207

Test Problem 281

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

1/
(Q

+
1)

 R
es

id
ua

l

.5 .6 .7 .8 .9 1.0

1/(Q+1) Predicted

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

0

R
O

O
T

P
 R

es
id

ua
l

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.2

ROOTP Predicted

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

208

Test Problem 287

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-40

-30

-20

-10

0

10

20

30

1/
R

O
O

T
 R

es
id

ua
l

0 10 20 30 40 50 60 70 80 90 100

1/ROOT Predicted

-4

-3

-2

-1

0

1

2

3

4 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

1/
R

O
O

T
P

 R
es

id
ua

l

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

1/ROOTP Predicted

-4

-3

-2

-1

0

1

2

3

4

5
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

209

Test Problem 288

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-3

-2

-1

0

1

2

3

LO
G

Q
 R

es
id

ua
l

-12 -11 -10 -9 -8 -7 -6 -5 -4

LOGQ Predicted

-3

-2

-1

0

1

2

3

4 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-1.0

-0.5

0.0

0.5

1.0

1.5

LO
G

P
 R

es
id

ua
l

-4.0 -3.0 -2.0 -1.0

LOGP Predicted

-3

-2

-1

0

1

2

3

4 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

210

Test Problem 289

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.1

0.0

R
O

O
T

Q
 R

es
id

ua
l

1.0 1.1

ROOTQ Predicted

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.10

0.00

0.10

0.20

0.30

1/
P

 R
e

si
d

ua
l

.70 .80 .90 1.00 1.10

1/P Predicted

-4

-3

-2

-1

0

1

2

3

4

5

6

7
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

211

Test Problem 297

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-2.0

-1.0

0.0

1.0

2.0

LO
G

Q
 R

es
id

ua
l

-11 -10 -9 -8 -7 -6 -5

LOGQ Predicted

-3

-2

-1

0

1

2

3 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

LO
G

P
 R

es
id

ua
l

-5.0 -4.0 -3.0 -2.0

LOGP Predicted

-4

-3

-2

-1

0

1

2

3

4

5
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

212

Test Problem 300

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.2

-0.1

0.0

0.1

0.2

0.3

LO
G

Q
 R

es
id

ua
l

-0.2 -0.1 .0 .1 .2 .3

LOGQ Predicted

-3

-2

-1

0

1

2

3

4

5

6
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

LO
G

P
 R

es
id

ua
l

-0.07 -0.05 -0.03 -0.01 .00 .01

LOGP Predicted

-2

-1

0

1

2

3

4

5
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

213

Test Problem 301

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.10

-0.05

0.00

0.05

0.10

0.15

LO
G

Q
 R

es
id

ua
l

-0.20 -0.10 .00 .10 .20

LOGQ Predicted

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

P
 R

es
id

ua
l

.97 .98 .99 1.00 1.01

P Predicted

-5

-4

-3

-2

-1

0

1

2

3 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

214

Test Problem 305

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.10

-0.05

0.00

0.05

0.10

0.15

LO
G

Q
 R

es
id

ua
l

-19.15 -19.05 -18.95 -18.85

LOGQ Predicted

-3

-2

-1

0

1

2

3

4

5 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.015

-0.010

-0.005

0.000

0.005

0.010

1/
P

 R
e

si
du

al

.200 .205 .210 .215 .220 .225

1/P Predicted

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

215

Test Problem 314

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-5

-4

-3

-2

-1

0

1

2

LO
G

Q
 R

es
id

ua
l

-10 -9 -8 -7 -6 -5 -4 -3 -2

LOGQ Predicted

-4

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.6

-0.4

-0.2

0.0

0.2

0.4

R
O

O
T

P
 R

es
id

ua
l

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.1 1.2

ROOTP Predicted

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

216

Test Problem 392

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

Q
 R

es
id

ua
l

.2 .3 .4 .5 .6 .7 .8

Q Predicted

-5

-4

-3

-2

-1

0

1

2 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-0.20

-0.10

0.00

0.10

P
 R

es
id

ua
l

.80 .90 1.00 1.10

P Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

217

Test Problem MVP1

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-3

-2

-1

0

1

2

3

4

LO
G

Q
 R

es
id

ua
l

-10 -9 -8 -7 -6 -5 -4 -3 -2

LOGQ Predicted

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-3

-2

-1

0

1

2

3

LO
G

P
 R

es
id

ua
l

-5 -4 -3 -2 -1 0

LOGP Predicted

-4

-3

-2

-1

0

1

2

3

4
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

218

Test Problem MVP2

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-5

-4

-3

-2

-1

0

1

2

3

4

LO
G

Q
 R

es
id

ua
l

-11 -10 -9 -8 -7 -6 -5 -4 -3

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-3

-2

-1

0

1

2

3

LO
G

P
 R

es
id

ua
l

-6 -5 -4 -3 -2 -1 0

LOGP Predicted

-3

-2

-1

0

1

2

3 .01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

219

Test Problem MVP3

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-2.0

-1.0

0.0

1.0

LO
G

Q
 R

es
id

ua
l

-8 -7 -6 -5 -4 -3

LOGQ Predicted

-4

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-2.0

-1.0

0.0

1.0

LO
G

P
 R

es
id

ua
l

-4.0 -3.0 -2.0 -1.0 .0

LOGP Predicted

-3

-2

-1

0

1

2
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

220

Test Problem MVP4

Performance Measure Q

Residual vs. Predicted Plot Normal Probability Plot

Performance Measure P

Residual vs. Predicted Plot Normal Probability Plot

-2

-1

0

1

2

3

LO
G

Q
 R

es
id

ua
l

-9 -8 -7 -6 -5 -4

LOGQ Predicted

-4

-3

-2

-1

0

1

2

3

4

5

6
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

-2

-1

0

1

2

LO
G

P
 R

es
id

ua
l

-4.0 -3.0 -2.0 -1.0 .0

LOGP Predicted

-3

-2

-1

0

1

2

3

4
.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot

221

BIBLIOGRAPHY

[1] A , M. A. Pattern Search Algorithms for Mixed Variable General
Constrained Optimization Problems. PhD thesis, Rice University, Department

of Computational and Applied Mathematics, 2002. also appears as Tech. Rep.

TR02-11.

[2] A , M. A., A , C., D , J. Filter pattern search algorithms
for mixed variable constrained optimization problems. Tech. Rep. TR04-09,

Department of Computational and Applied Mathematics, Rice University, Houston,

Texas, June 2004.

[3] A , S. J., E , L. F. P., V , J., V R , R. A., S ,
A. J. G., R , J. E. Simulation based optimization of stochastic
systems with integer design variables by sequential multipoint linear approximation.

Structural and Multidisciplinary Optimization 22 (2001), 125—138.

[4] A , M. A., A , T. M. Simulation-based optimization using
simulated annealing with ranking and selection. Computers and Operations Research

29 (2002), 387—402.

[5] A , M. R. Cluster Analysis for Applications. Academic Press, New York,
1973.

[6] A , E. J., F , M. C. A direct search algorithm for optimization

with noisy function evaluations. SIAM Journal on Optimization 11, 3 (2001),

837—857.

[7] A , S. A method for discrete stochastic optimization. Management
Science 41, 12 (1995), 1946—1961.

[8] A , S. A global search method for discrete stochastic optimization.
SIAM Journal on Optimization 6, 2 (1996), 513—530.

[9] A , S. A review of simulation optimization techniques. In Proceedings
of the 1998 Winter Simulation Conference (Picataway, New Jersey, 1998), D. J.

Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan, Eds., Institute of

Electrical and Electronics Engineers, pp. 151—158.

[10] A , S. Simulation optimization (chap. 9). In Handbook of Simulation
(New York, 1998), J. Banks, Ed., John Wiley and Sons, pp. 307—333.

[11] A , S. Accelerating the convergence of random search methods for

discrete stochastic optimization. ACM Transactions on Modeling and Computer

Simulation 9, 4 (1999), 349—380.

[12] A , E., K , J., H , D. D., G.G . Response surface

methodology revisited. In Proceedings of the 2002 Winter Simulation Conference

(Piscataway, New Jersey, 2002), E. Yücesan, C. H. Chen, J. L. Snowdon, and J. M.

Charnes, Eds., Institute of Electrical and Electronics Engineers, pp. 377—383.

222

[13] A , C., D , J ., J. E. Pattern search algorithms for mixed variable
programming. SIAM Journal on Optimization 11, 3 (2000), 573—594.

[14] A , C., D , J ., J. E. Analysis of generalized pattern searches.
SIAM Journal on Optimization 13, 3 (2003), 889—903.

[15] A , C., D , J ., J. E. Mesh adaptive direct search algorithms for
constrained optimization. Tech. Rep. TR04-02, Department of Computational and

Applied Mathematics, Rice University, Houston, Texas, January 2004.

[16] A , C., D , J ., J. E. A pattern search filter method for nonlinear
programming without derivatives. SIAM Journal on Optimization 14, 4 (2004),

980—1010.

[17] A , F. Simulation optimization methodologies. In Proceedings of the 1999
Winter Simulation Conference (Piscataway, New Jersey, 1999), P. A. Farrington,

H. B. Nembhard, D. T. Sturrock, and G. W. Evans, Eds., Institute of Electrical and

Electronics Engineers, pp. 93—100.

[18] A , F., T , J. Optimization of stochastic simulation models.
Mathematics and Computers in Simulation 22 (1980), 231—241.

[19] B , N., S , T. A modified convergence theorem for a random

optimization method. Information Sciences 13 (1977), 159—166.

[20] B , R. R. Minimization algorithms for functions with random noise. American
Journal of Mathematical and Management Sciences 4, 1/2 (1984), 109—138.

[21] B , R. R. Simulation metamodels. In Proceedings of the 1998 Winter
Simulation Conference (Piscataway, New Jersey, 1998), D. J. Medeiros, E. F.

Watson, J. S. Carson, and M. S. Manivannan, Eds., Institute of Electrical and

Electronics Engineers, pp. 167—174.

[22] B , R. R., I , J . , J. S. Modifications of the nelder-mead simplex
method for stochastic simulation response optimization. In Proceedings of the 1991

Winter Simulation Conference (Piscataway, New Jersey, 1991), B. L. Nelson, W. D.

Kelton, and G. M. Clark, Eds., Institute of Electrical and Electronics Engineers,

pp. 945—953.

[23] B , R. R., I , J ., J. S. Nelder-mead simplex modifications for
simulation optimization. Management Science 42, 7 (1996), 954—973.

[24] B , M. S., J , J. J., S , H. D. Linear Programming and
Network Flows, 2nd ed. Wiley & Sons, New York, 1990.

[25] B , M. S., S , H. D., S , C. M. Nonlinear Programming:
Theory and Algorithms, 2nd ed. Wiley & Sons, New York, 1993.

[26] B , R. E. A single-sample multiple decision procedure for ranking means
of normal populations with known variances. Annals of Mathematical Statistics 25

223

(1954), 16—39.

[27] B , R. E., S , T. J., G , D. M. Design and Analysis
of Experiments for Statistical Selection, Screening, and Multiple Comparisons. John

Wiley and Sons, New York, 1995.

[28] B , J. R. Multidimensional stochastic approximation method. Annals of
Mathematical Statistics 25 (1954), 737—744.

[29] B , J., N , B. L., K , S. H. Using ranking and selection to ’clean
up’ after simulation optimization. Operations Research 51 (2003), (to appear).

[30] B , A., D , J ., J. E., F , P., S , D., T , V.
Optimization using surrogate objectives on a helicopter test example. In Optimal

Design (Philadelphia, 1998), J. Burns and E. Cliff, Eds., SIAM.

[31] B , A. J., D , J ., J. E., F , P. D., M , D. W.,
S , D. B. Managing surrogate objectives to optimize a helicopter rotor design
– further experiments. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis & Optimization (September 1998). AIAA

paper 98-4717.

[32] B , A. J., D , J ., J. E., F , P. D., S , D. B., T ,
V., T , M. W. A rigorous framework for optimization of expensive
functions by surrogates. Structural Optimization 17, 1 (1999), 1—13.

[33] B , G. E. P. Evolutionary operation: A method for increasing industrial

productivity. Applied Statistics 6 (1957), 81—101.

[34] C , Y., M , A. Simulation optimization: Methods and applications.
In Proceedings of the 1997 Winter Simulation Conference (1997), S. Andradóttir,

K. J. Healy, D. H. Withers, and B. L. Nelson, Eds., pp. 118—126.

[35] C , F. H. Optimization and Nonsmooth Analysis. SIAM Classics in Applied

Mathematics 5. SIAM, Philadelphia, 1990.

[36] C , A. R., G , N. I. M., T , P. L. A globally convergent

augmented lagrangian algorithm for optimization with general constraints and

simple bounds. SIAM Journal on Numerical Analysis 28, 2 (1991), 545—572.

[37] D , C. Theory of positive linear dependence. American Journal of Mathematics
76, 4 (1954), 733—746.

[38] D , J ., J. E., T , V. Direct search methods on parallel machines.
SIAM Journal on Optimization 1, 4 (1991), 448—474.

[39] D , J ., J. E., T , V. Managing approximation models in
optimization. In Proceedings of the 6th AIAA/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization (1996). Work in Progress paper.

224

[40] D , E. D., L , R. M., T , V. On the local convergence of
pattern search. SIAM Journal on Optimization 14, 2 (2003), 567—583.

[41] D , R. O., H , P. E., S , D. G. Pattern Classification, 2nd ed.
John Wiley & Sons, New York, 2001.

[42] D , E. J., D , S. R. Allocation of observations in ranking and
selection. The Indian Journal of Statistics 37B, 1 (1975), 28—78.

[43] E , V. Nonparametric estimates of a multivariate probability density.
Theory of Probability and its Applications 14 (1969), 153—158.

[44] E , Y. On the method of generalized stochastic gradients and quasi-fejer
sequences. Cybernetics 5 (1969), 208—220.

[45] F , R., L , S. Nonlinear programming without a penalty
function. Mathematical Programming 91, 2 (2002), 239—269.

[46] F , M. C. Optimization via simulation: A review. Annals of Operations Research
53 (1994), 199—247.

[47] F , M. C. Simulation optimization. In Encyclopedia of Operations Research and
Management Science (Boston, MA, 2001), S. I. Gass and C. M. Harris, Eds., Kluwer

Academic, pp. 756—759.

[48] F , M. C. Optimization for simulation: Theory vs. practice. INFORMS Journal
on Computing 14, 3 (2002), 192—215.

[49] G , S. B., M , S. K. Simulated annealing with noisy or imprecise
energy measurements. Journal of Optimization Theory and Applications 62 (1989),

49—62.

[50] G , L., H , S. D., V , Z. Optimization over discrete sets via
SPSA. In Proceedings of the 38th Conference on Decision & Control (1999), IEEE,

pp. 1791—1795.

[51] G , L., H , S. D., V , Z. Optimization over discrete sets via
SPSA. In Proceedings of the 1999 Winter Simulation Conference (Piscataway, New

Jersey, 1999), P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans,

Eds., Institute of Electrical and Electronics Engineers, pp. 466—470.

[52] G , P. W. Likelihood ratio gradient estimation: An overview. In Proceedings of
the 1987 Winter Simulation Conference (Piscataway, New Jersey, 1987), A. Thesen,

H. Grant, and W. D. Kelton, Eds., Institute of Electrical and Electronics Engineers,

pp. 366—375.

[53] G , D., N , B. L. Comparing systems via simulation (chap. 8).
In Handbook of Simulation (New York, 1998), J. Banks, Ed., John Wiley and Sons,

pp. 273—306.

225

[54] H , P. Nongradient methods in multidisciplinary design optimization—status
and potential. Journal of Aircraft 36, 1 (1999), 255—265.

[55] H , W. Applied Nonparametric Regression. Cambridge University Press, New
York, 1990.

[56] H , H. E., M , M. A genetic algorithm and an

indifference-zone ranking and selection framework for simulation optimization. In

Proceedings of the 2001 Winter Simulation Conference (Piscataway, New Jersey,

2001), B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, Eds., Institute

of Electrical and Electronics Engineers, pp. 417—421.

[57] H , Y. C. A survey of the perturbation analysis of discrete event dynamic systems.
Annals of Operations Research 3 (1985), 393—402.

[58] H , W., S , K. Test Examples for Nonlinear Programming
Codes. Springer-Verlag, Berlin, Heidelberg, New York, 1981. Lecture Notes in

Economics and Mathematical Systems No. 187.

[59] H , L. J., N , B. L. An indifference-zone selection procedure with
minimum switching and sequential sampling. In Proceedings of the 2003 Winter

Simulation Conference (Piscataway, New Jersey, 2003), S. Chick, P. J. Sánchez,

D. Ferrin, and D. J. Morrice, Eds., Institute of Electrical and Electronics Engineers,

pp. 474—480.

[60] H , R., J , T. A. "Direct search" solution of numerical and
statistical problems. Journal of the Association of Computing Machinery 8 (1961),

212—229.

[61] H , D. G., W , J. R. A revised simplex search procedure for
stochastic simulation response-surface optimization. In Proceedings of the 1998

Winter Simulation Conference (Piscataway, New Jersey, 1998), D. J. Medeiros,

E. F. Watson, J. S. Carson, and M. S. Manivannan, Eds., Institute of Electrical and

Electronics Engineers, pp. 751—759.

[62] H , D. G., W , J. R. A revised simplex search procedure

for stochastic simulation response surface optimization. INFORMS Journal on

Computing 12, 4 (2000), 272—283.

[63] J , S. H., S , L. W. Techniques for simulation response
optimization. Operations Research Letters 8 (1989), 1—9.

[64] J , R., C , W., S , T. Comparative studies of metamodelling
techniques under multiple modelling criteria. Structural and Multidisciplinary

Design Optimization 23 (2001), 1—13.

[65] J , R., D , X., C , W. The use of metamodeling techniques for
optimization under uncertainty. In Proceedings of Design Engineering Technical

Conferences (Pittsburgh, Pennsylvania, September 2001).

226

[66] J , S., S , H. D., T , J. D. An enhanced response surface
methodology (RSM) algorithm using gradient deflection and second-order search

strategies. Computers and Operations Research 25, 7/8 (1998), 531—541.

[67] K , R. C., G , J. L. Application of the adaptive random search

to discrete and mixed integer optimization. International Journal for Numerical

Methods in Engineering 12 (1978), 289—298.

[68] K , J., W , J. Stochastic estimation of the maximum of a

regression function. Annals of Mathematical Statistics 23 (1952), 462—466.

[69] K , S. H., N , B. L. A fully sequential procedure for indifference-zone
selection in simulation. ACM Transactions on Modeling and Computer Simulation

11, 3 (2001), 251—273.

[70] K , A. J., S , A. Stochastic optimization (chap. 101). In
Handbook of Industrial Engineering, 3rd Edition (New York, 2001), G. Salvedy, Ed.,

John Wiley, pp. 2625—2650.

[71] K , J. H. A Computational Approach to Statistics. University of

Wisconsin at Madison, 2004. Copyright by Jerome H. Klotz, downloaded from

<http://www.stat.wisc.edu/ klotz/> [accessed 4 August 2004].

[72] K , P. N., S , T. W., A , J. K., M , F. Statistical
approximations for multidisciplinary design optimization: The problem of size.

Journal of Aircraft 36, 1 (1999), 275—286.

[73] K , P. N., W , B., G , O., S , T. Facilitating
probabilistic multidisciplinary design optimization using kriging approximation

models. In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis &

Optimization (September 2002). AIAA paper 2002-5415.

[74] K , M., A , C., D , J ., J. E. Mixed variable
optimization of the number and composition of heat intercepts in a thermal

insulation system. Optimization and Engineering 2, 1 (2001), 5—29.

[75] K , H. J., C , D. S. Stochastic Approximation Methods for
Constrained and Unconstrained Systems. Springer-Verlag, New York, 1978.

[76] K , H. J., Y , J. Stochastic approximation with averaging of the
iterates: Optimal asymptotic rate of convergence for general processes. SIAM

Journal on Control and Optimization 31, 4 (1993), 1045—1062.

[77] L , T. Empirical comparison of search algorithms for discrete event
simulation. Computers and Industrial Engineering 40 (2001), 133—148.

[78] L , M., M , R. Neural network prediction in a system for optimizing
simulations. IIE Transactions 34 (2002), 273—282.

[79] L , R. M., T , V. Rank ordering and positive bases in pattern

227

search algorithms. Tech. Rep. ICASE 96-71, NASA Langley Research Center, 1996.

[80] L , R. M., T , V. Pattern search algorithms for bound constrained
minimization. SIAM Journal on Optimization 9, 4 (1999), 1082—1099.

[81] L , R. M., T , V. Pattern search methods for linearly constrained
minimization. SIAM Journal on Optimization 10, 3 (2000), 917—941.

[82] L , R. M., T , V. A globally convergent augmented Lagrangian
pattern search algorithm for optimization with general constraints and simple

bounds. SIAM Journal on Optimization 12, 4 (2002), 1075—1089.

[83] L , L., P , G., W , H. Stochastic Approximation and Optimization
of Random Systems. Birkhäuser Verlag, Berlin, 1992.

[84] L , S., P , V., S , M. An algorithm model for mixed

variable programming. Tech. Rep. 17-02, Department of Computer and Systems

Science “Antonio Ruberti”, University of Rome, 2002.

[85] L , S., S , M. On the global convergence of derivative-free
methods for unconstrained optimization. SIAM Journal on Optimization 13, 1

(2002), 97—116.

[86] M , A. L., W , M., D , J ., J. E., M , P. Optimal
aeroacoustic shape design using the surrogate management framework. Optimization

and Engineering 5, 2 (2004), 235—262.

[87] M , J. Random optimization. Automation and Remote Control 26, 2 (1965),

246—253.

[88] M K , M. D., B , R. J., C , W. J. A comparison of three
methods for selecting values of input variables in the analysis of output from a

computer code. Technometrics 21, 2 (1979), 239—245.

[89] M , N., C , P. An approach based on hotelling’s test for
multicriteria stochastic simulation-optimization. Simulation Practice and Theory 8

(2000), 341—355.

[90] M , N., D , A., P , H. On the comparison of
solutions in stochastic simulation-optimization problems with several performance

measures. International Transactions of Operational Research 5, 2 (1998), 137—145.

[91] M , M., B , A. J., B , R. R., S , T. W.
Computationally inexpensive metamodel assessment strategies. AIAA Journal 40,

10 (2002), 2053—2060.

[92] M , M. Optimization in simulation: A survey of recent results. In

Proceedings of the 1987 Winter Simulation Conference (Piscataway, New Jersey,

1987), A. Thesen, H. Grant, and W. Kelton, Eds., Institute of Electrical and

Electronics Engineers, pp. 58—67.

228

[93] M , D. C. Design and Analysis of Experiments, 5th ed. John Wiley &
Sons, New York, 2001.

[94] M , R. H., M , D. C. Response Surface Methodology: Process
and Product Optimization Using Designed Experiments, 2nd ed. John Wiley and

Sons, New York, 2002.

[95] N , E. A. On estimating regression. Theory of Probability and Its
Applications 9 (1964), 141—142.

[96] N , U., C , D. P. Using computer simulation to optimize
flexible manufacturing system design. In Proceedings of the 1989 Winter Simulation

Conference (Piscataway, New Jersey, 1989), E. A. MacNair, K. J. Musselman, and

P. Heidelberger, Eds., Institute of Electrical and Electronics Engineers, pp. 396—405.

[97] N , A. V., P , B. T., T , A. B. Optimal and robust kernel
algorithms for passive stochastic approximation. IEEE Transactions on Information

Theory 38, 5 (1992), 1577—1583.

[98] N , J. A., M , R. A simplex method for function minimization. The
Computer Journal 7, 4 (1965), 308—313.

[99] N , B. L., S , J., G , D., S , W. Simple procedures
for selecting the best simulated system when the number of alternatives is large.

Operations Research 49, 6 (2001), 950—963.

[100] N , J., W , S. J. Numerical Optimization. Springer-Verlag, New
York, 1999.

[101] N , A., M , J. S. Application of an optimization procedure to
steady-state simulation. In Proceedings of the 1984 Winter Simulation Conference

(Piscataway, New Jersey, 1984), A. Sheppard, U. Pooch, and D. Pegden, Eds.,

Institute of Electrical and Electronics Engineers, pp. 217—219.

[102] Ó , S. Iterative ranking-and-selection for large-scale optimization. In
Proceedings of the 1999 Winter Simulation Conference (1999), P. A. Farrington,

H. B. Nembhard, D. T. Sturrock, and G. W. Evans, Eds., pp. 479—485.

[103] Ó , S., K , J. Simulation optimization. In Proceedings of the
2002 Winter Simulation Conference (Piscataway, New Jersey, 2002), E. Yücesan,

C. H. Chen, J. L. Snowdon, and J. M. Charnes, Eds., Institute of Electrical and

Electronics Engineers, pp. 79—84.

[104] O , M. S., A , H., A , C. Optimisation des stratégies
de maintenance intégration á la production. Journal Européen des Systèmes

Automatisés 37, 5 (2003), 587—605.

[105] P , E. On estimation of a probability density and mode. Annals of
Mathematical Statistics 35 (1962), 1065—1076.

229

[106] P , C. D., G , M. P. Decision optimization for GASP IV
simulation models. In Proceedings of the 1977 Winter Simulation Conference

(Piscataway, New Jersey, 1977), Institute of Electrical and Electronics Engineers,

pp. 127—133.

[107] P , C. D., G , M. P. A decision-optimization module for SLAM.
Simulation 34, 1 (1980), 18—25.

[108] P , J. A Combined Procedure for Optimization Via Simulation. PhD
thesis, Northwestern University, 2002.

[109] P , J., N , B. L. Selection-of-the-best procedures for
optimization via simulation. In Proceedings of the 2001 Winter Simulation

Conference (Piscataway, New Jersey, 2001), B. A. Peters, J. S. Smith, D. J.

Medeiros, and M. W. Rohrer, Eds., Institute of Electrical and Electronics Engineers,

pp. 401—407.

[110] P , J., N , B. L. A combined procedure for optimization
via simulation. ACM Transactions on Modeling and Computer Simulation 13, 2

(2003), 155—179.

[111] P , B. T., J , A. B. Acceleration of stochastic approximation
by averaging. SIAM Journal on Control and Optimization 30, 4 (1992), 838—855.

[112] R , C. R., B , J. E. Introduction (chapter 1). In Modern
Heuristic Techniques for Combinatorial Problems (New York, 1993), C. R. Reeves,

Ed., John Wiley and Sons, pp. 1—19.

[113] R , S. I. A Probability Path. Birkhäuser, Boston, 1998.

[114] R , Y. On two-stage selection procedures and related probability-inequalities.
Communications in Statistics A7, 8 (1978), 799—811.

[115] R , H., M , S. A stochastic approximation method. Annals of
Mathematical Statistics 22 (1951), 400—407.

[116] R , J. P. An extension of shapiro and wilk’s w test for normality to large
samples. Applied Statistics 31 (1982), 115—124.

[117] R Ń , A., S , A. Stochastic programming models. In
Stochastic Programming (Handbooks in Operations Research and Management

Science) (Amsterdam, 2003), A. Ruszczyński and A. Shapiro, Eds., Elsevier Science,

pp. 1—64.

[118] S , P. Constrained optimization via stochastic approximation with a
simultaneous perturbation gradient approximation. Automatica 33, 5 (1997),

889—892.

[119] S , M. H. Optimization in simulation: Current issues and the future
outlook. Naval Research Logistics 37 (1990), 807—825.

230

[120] S , R. L. Solving nonconvex nonlinear programming and mixed-integer
nonlinear programming problems with adaptive random search. Industrial &

Engineering Chemistry Research 31, 1 (1992), 262—273.

[121] SAS I , I . JMP Statistics and Graphics Guide, Version 5.1. Cary, N.C.,
2003.

[122] S , K. More Test Examples for Nonlinear Programming Codes.
Springer-Verlag, Berlin, Heidelberg, New York, 1987. Lecture Notes in Economics

and Mathematical Systems No. 282.

[123] S , J. W., T , R. E. Simulation and Analysis of Industrial
Systems. Irwin, Homewood, IL, 1970.

[124] S , L. W. Simulation sensitivity analysis: A frequency domain approach.
In Proceedings of the 1981 Winter Simulation Conference (Piscataway, New Jersey,

1981), T. I. Oren, C. M. Delfosse, and C. M. Shub, Eds., Institute of Electrical and

Electronics Engineers, pp. 455—459.

[125] S , S. S., W , M. B. An analysis of variance test for normality.
Biometrika 52 (1965), 591—611.

[126] S , D. J. Handbook of Parametric and Nonparametric Statistical Procedures,
2nd ed. Chapman & Hall / CRC, Boca Raton, FL, 2000.

[127] S , C. M., T , V., T , M. W. Model-assisted pattern
search methods for optimizing expensive computer simulations. In Proceedings of

the Section on Physical and Engineering Sciences, American Statistical Association

(2002).

[128] S , T. W. Kriging models for global approximation in simulation-based
multidisciplinary design optimization. AIAA Journal 39, 12 (December 2001),

2233—2241.

[129] S , T. W., M , T. M., K , J. J., M , F. Comparison
of response surface and kriging models for multidisciplinary design optimization.

In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &

Optimization (September 1998). AIAA paper 98-4755.

[130] S , D. E. An empirical investigation of optimum-seeking in the computer
simulation situation. Operations Research 21 (1973), 475—497.

[131] S , F. J., W , R. J.-B. Minimization by random search techniques.

Mathematics of Operations Research 6, 1 (1981), 19—30.

[132] S , J. C. A stochastic approximation technique for generating maximum

likelihood parameter estimates. In Proceedings of the 1987 American Control

Conference (Minneapolis, MN, 1987), pp. 1161—1167.

[133] S , J. C. A stochastic approximation algorithm for large-dimensional systems

231

in the kiefer-wolfowitz setting. In Proceedings of the IEEE Conference on Decision

and Control (1988), pp. 1544—1548.

[134] S , J. C. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley and Sons, Hoboken, New Jersey, 2003.

MATLAB code available online via <http://www.jhuapl.edu/ISSO/> [accessed

March 19, 2004].

[135] S , D. F. A general regression neural network. IEEE Transactions on Neural
Networks 2, 6 (November 1991), 568—576.

[136] S , W., H , G. R., H , F. R. Sequential application
of simplex designs in optimization and evolutionary operation. Technometrics 4, 4

(1962), 441—461.

[137] S , J. R., H , P. D., J , S. H., S , L. W. A
survey of simulation optimization techniques and procedures. In Proceedings of

the 2000 Winter Simulation Conference (Piscataway, New Jersey, 2000), J. A.

Joines, R. R. Barton, K. Kang, and P. A. Fishwick, Eds., Institute of Electrical and

Electronics Engineers, pp. 119—128.

[138] S , J. R., H , P. D., J , S. H., S , L. W. A
survey of recent advances in discrete input parameter discrete-event simulation

optimization. IIE Transactions 36 (2004), 591—600.

[139] S , J. R., J , S. H. A survey of ranking, selection, and

multiple comparison procedures for discrete-event simulation. In Proceedings of the

1999 Winter Simulation Conference (Piscataway, New Jersey, 1999), P. Farrington,

H. Nembhard, D. Sturrock, and G. Evans, Eds., Institute of Electrical and

Electronics Engineers, pp. 492—501.

[140] S , J. R., J , S. H., Y , E. Discrete-event simulation
optimization using ranking, selection, and multiple comparison procedures: A

survey. ACM Transactions on Modeling and Computer Simulation 13, 2 (2003),

134—154.

[141] T , J. J. On Convergence of the Nelder-Mead Simplex Algorithm for

Unconstrained Stochastic Optimization. PhD thesis, The Pennsylvania State

University, Department of Statistics, May 1995.

[142] T , J. J., A , S. F., B , R. R. Sample size selection for
improved nelder-mead performance. In Proceedings of the 1995 Winter Simulation

Conference (Piscataway, New Jersey, 1995), C. Alexopoulous, K. Kang, W. R.

Lilegdon, and D. Goldsman, Eds., Institute of Electrical and Electronics Engineers,

pp. 341—345.

[143] T , V. On the convergence of pattern search algorithms. SIAM Journal on

Optimization 7, 1 (1997), 1—25.

[144] T , V., T , M. W. From evolutionary operation to parallel

232

direct search: Pattern search algorithms for numerical optimization. Computing

Science and Statistics 29, 1 (1997), 396—401.

[145] T , V., T , M. W. Using approximations to accelerate engi-
neering design optimization. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis & Optimization (September 1998). AIAA

paper 98-4800.

[146] T , M. W. On the use of direct search methods for stochastic optimization.
Tech. Rep. TR00-20, Department of Computational and Applied Mathematics, Rice

University, Houston Texas, June 2000.

[147] T , M. W., T , V. Numerical optimization using computer
experiments. Tech. Rep. ICASE 97-38, NASA Langley Research Center, 1997.

[148] W , I.-J., S , J. C. A constrained simultaneous perturbation stochastic
approximation algorithm based on penalty functions. In Proceedings of the American

Control Conference (1999), pp. 393—399.

[149] W , Y. Stochastic algorithms with armijo stepsizes for minimization functions.
Journal of Optimization Theory and Applications 64, 2 (1990), 399—417.

[150] W , P. D. Neural Computing. Van Nostrand Reinhold, New York, 1989.

[151] W , G. S. Smooth regression analysis. Sankhyā, Series A 26 (1964), 359—372.

[152] W , M. H. What, if anything, is new in optimization? Tech. Rep. 00-4-08,

Lucent Technologies, Bell Laboratories, Murray Hill, New Jersey, June 2000.

[153] Y , S. J., F , L. On sequential search for the maximum of an

unknown function. Journal of Mathematical Analysis and Applications 41 (1973),

234—259.

[154] Y , D., M , H. Stochastic discrete optimization. SIAM Journal on

Control and Optimization 30, 3 (1992), 594—612.

[155] Z , A. A. Theory of Global Random Search. Kluwer Academic, Boston,

1991.

233

Vita

Major Todd A. Sriver was born in Plymouth, Indiana and raised in South Bend,

Indiana. He graduated from South Bend’s Riley High School in 1986 and then attended

Purdue University in West Lafayette, Indiana. He graduated with a Bachelor of Science

degree in Aeronautical and Astronautical Engineering in 1990. He was commissioned in

the United States Air Force on 22 September 1993 upon graduation from Officer Training

School at Lackland Air Force Base, Texas.

In his first assignment, Major Sriver served as an astronautical engineer and Chief of

Requirements Analysis in the Engineering Directorate of Detachment 2, Space and Missiles

Systems Center at Onizuka Air Station, California. In August 1996, he was reassigned to

the Air Force Institute of Technology (AFIT) at Wright-Patterson Air Force Base, Ohio,

to work on a master of science degree in Operations Research, graduating in March of 1998

as a distinguished graduate. From April 1998 to August 2001, Major Sriver served as Chief

Scientist for the 33d Flight Test Squadron, Air Mobility Command’s sole operational test

and evaluation agency located at Fort Dix, New Jersey. In September 2001, he returned

to AFIT to work on a doctorate in Operations Research. Upon graduation in September

2004, Major Sriver will be reassigned to the Air Force Personnel Operations Agency at the

Pentagon.

234

Index

Artificial neural networks, 32

Bandwidth parameter, 83

Borel-Cantelli Lemma, 60

Computational study

analysis of variance, 124

experimental design, 118

nonparametric statistical tests, 125

performance measures, 119

statistical model, 120

termination criteria, 138

Conforming directions

algorithm, 101

definition, 47

Continuity

neighbor set, 43

Convergence

almost sure (w.p. 1), 59

mixed variable domain, 43

Direct search, 22

Hooke-Jeeves, 26

Nelder-Mead, 23

Discrete neighbor

definition, 42

Extended poll endpoint, 49

Extended poll trigger, 48

Generalized pattern search, 36

for linear constraints, 37, 46

for mixed variables, 39

algorithm, 49

for nonlinear constraints

augmented Lagrangian

method, 38, 148

filter method, 38, 148

for random responses, 39, 50, 59

Generalized regression neural net-

works, 84

Heuristics, 34

Hooke-Jeeves method, 26

Indifference zone, 19

parameter, 19

update rules, 55, 102

Kernel regression, 32, 83

Kriging, 31

Latin hypercube sampling, 85

strength, 85

Least favorable configuration, 21

Limit point, 43, 59

Local minimizer, 42

Merit function, 87

Mesh

continuous variables, 44, 45

mixed variables, 46

size parameter, 50, 61

update rules, 49, 55

Mesh adaptive direct search

(MADS), 38, 148

MGPS-RS algorithm, 53

algorithm design, 94

convergence theory, 57

parameters, 102

termination criteria, 90

with surrogates, 82, 95

Mixed-variable programming, 3

Multivariate adaptive regression

splines, 33

Nadaraya-Watson estimator, 33, 83

bandwidth parameter, 83

Nelder-Mead method, 23, 111

Optimality conditions

first-order necessary, 42, 69

Poll set

continuous variables, 45

mixed variables, 46

Positive basis, 37, 44

Positive combination, 44

Positive spanning set, 37, 44

Probability of correct selection, 20

235

Radial basis functions, 33

Random search methods, 14, 112

convergence theory, 18

Ranking and selection, 19, 51, 77

Rinott’s procedure, 78

screen and select procedure, 79

sequential selection with memory,

80

Refining subsequence, 65

Response surface methods, 28

artificial neural networks, 32

kernel regression, 32

kriging, 31

multivariate adaptive regression

splines, 33

polynomial regression, 30

radial basis functions, 33

Rinott’s R&S procedure, 78

Screen and select R&S procedure, 79

Sequential selection with memory

R&S procedure, 80

Significance level

parameter

update rules, 55, 60, 102

Stochastic approximation, 9

convergence theory, 12

finite difference (FDSA), 10, 108

for constrained problems, 13, 110

simultaneous perturbation

(SPSA), 11, 108

Stochastic programming, 8

Sub-iterates, 55

Successful iteration, 56

definition, 56

Surrogate function, 28, 82

Termination criteria, 90, 138

Test problems, 113

continuous variables, 114

mixed variables, 116

Unsuccessful iteration, 56

definition, 56

236

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

09-2004
2. REPORT TYPE

Doctoral Dissertation

3. DATES COVERED (From – To)
Sep 2001 – Sep 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

PATTERN SEARCH RANKING AND SELECTION ALGORITHMS FOR
MIXED-VARIABLE OPTIMIZATION OF STOCHASTIC SYSTEMS

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Sriver, Todd A., Major, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/DS/ENS/04-02

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Juan R. Vasquez, Major, USAF, Ph.D.
Air Force Office of Scientific Research
4015 Wilson Blvd, Room 173
Arlington, VA 22203-1954

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 A new class of algorithms is introduced and analyzed for bound and linearly constrained optimization problems with stochastic objective
functions and a mixture of design variable types. The generalized pattern search (GPS) class of algorithms is extended to a new problem setting in
which objective function evaluations require sampling from a model of a stochastic system. The approach combines GPS with ranking and selection
(R&S) statistical procedures to select new iterates. The derivative-free algorithms require only black-box simulation responses and are applicable
over domains with mixed variables (continuous, discrete numeric, and discrete categorical) to include bound and linear constraints on the continuous
variables. A convergence analysis for the general class of algorithms establishes almost sure convergence of an iteration subsequence to stationary
points appropriately defined in the mixed-variable domain. Additionally, specific algorithm instances are implemented that provide computational
enhancements to the basic algorithm. Implementation alternatives include the use of modern R&S procedures designed to provide efficient sampling
strategies and the use of surrogate functions that augment the search by approximating the unknown objective function with nonparametric response
surfaces. In a computational evaluation, six variants of the algorithm are tested along with four competing methods on 26 standardized test problems.
The numerical results validate the use of advanced implementations as a means to improve algorithm performance.
15. SUBJECT TERMS
Pattern Search, Ranking and Selection, Stochastic Optimization, Mixed Variable Programming, Simulation Optimization, Kernel
Regression, Surrogate Functions

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
James W. Chrissis, AFIT/ENS

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

251

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4606; e-mail: James.Chrissis@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

